forked from h2oai/h2o-2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
H2OTestDemo.R
37 lines (32 loc) · 1.58 KB
/
H2OTestDemo.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# Demo to test R functionality
# To invoke, need R 2.13.0 or higher
# R -f H2OTestDemo.R
source("H2O_Load.R")
# library(h2o)
localH2O = new("H2OClient", ip = "localhost", port = 54321)
h2o.checkClient(localH2O)
# Test using prostate cancer data set
prostate.hex = h2o.importURL(localH2O, path = "https://raw.github.com/0xdata/h2o/master/smalldata/logreg/prostate.csv", key = "prostate.hex")
prostate.sum = summary(prostate.hex)
print(prostate.sum)
prostate.glm = h2o.glm(y = "CAPSULE", x = c("AGE","RACE","PSA","DCAPS"), data = prostate.hex, family = "binomial", nfolds = 10, alpha = 0.5)
print(prostate.glm)
prostate.km = h2o.kmeans(data = prostate.hex, centers = 5, cols = c("AGE","RACE","GLEASON","CAPSULE","DCAPS"))
print(prostate.km)
prostate.rf = h2o.randomForest(y = "CAPSULE", x_ignore = c("ID","DPROS"), data = prostate.hex, ntree = 50, depth = 150)
# Test of random forest using iris data set
iris.hex = h2o.importFile(localH2O, path = "../smalldata/iris/iris.csv", key = "iris.hex")
iris.sum = summary(iris.hex)
print(iris.sum)
iris.rf = h2o.randomForest(y = "4", data = iris.hex, ntree = 50, depth = 100, classwt = c("Iris-versicolor"=20.0, "Iris-virginica"=30.0))
print(iris.rf)
# Test of k-means using random Gaussian data set
covtype.hex = h2o.importFile(localH2O, path = "../smalldata/covtype/covtype.20k.data")
covtype.sum = summary(covtype.hex)
print(covtype.sum)
covtype.km = h2o.kmeans(covtype.hex, 10)
print(covtype.km)
# Test import folder function
glm_test.hex = h2o.importFolder(localH2O, path = "../smalldata/glm_test")
for(i in 1:length(glm_test.hex))
print(summary(glm_test.hex[[i]]))