forked from jukkakansanaho/udacity-dend-project-1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathetl.py
194 lines (161 loc) · 6.13 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
import glob
import psycopg2
import pandas as pd
from sql_queries import *
def process_song_file(cur, filepath):
"""Process input data (1 JSON file) and insert into songs and
artists tables.
Keyword arguments:
* cur -- reference to connected db.
* filepath -- path to file to be processed.
Output:
* song_data in songs table.
* artist_data in artists table.
"""
# open song file
df = pd.DataFrame(pd.read_json( filepath,
lines=True,
orient='columns'))
# insert song record
song_data = ( df.values[0][7],
df.values[0][8],
df.values[0][0],
df.values[0][9],
df.values[0][5])
cur.execute(song_table_insert, song_data)
# insert artist record
artist_data = ( df.values[0][0],
df.values[0][4],
df.values[0][2],
df.values[0][1],
df.values[0][3])
cur.execute(artist_table_insert, artist_data)
def process_log_file(cur, filepath):
"""Process input data (1 JSON file) and insert into songs and
artists tables.
Keyword arguments:
* cur -- reference to connected db.
* filepath -- path to file to be processed.
Output:
* time_data in time table.
* user_data in users table.
* songplay_data in songplay table.
"""
# open log file
df = pd.DataFrame(pd.read_json( filepath,
lines=True,
orient='columns'))
df_orig = df
# filter by NextSong action
df = df[df['page']=='NextSong']
# convert timestamp column to datetime
t = pd.to_datetime(df['ts'], unit='ms')
# insert time data records
time_data = list(zip( t.dt.strftime('%Y-%m-%d %I:%M:%S'),
t.dt.hour,
t.dt.day,
t.dt.week,
t.dt.month,
t.dt.year,
t.dt.weekday))
column_labels = ( 'start_time',
'hour',
'day',
'week',
'month',
'year',
'weekday')
time_df = pd.DataFrame( time_data,
columns=column_labels)
for i, row in time_df.iterrows():
cur.execute(time_table_insert, list(row))
# load user table
user_data = df_orig.get([ 'userId',
'firstName',
'lastName',
'gender',
'level'])
# adjust column names
user_data.columns = [ 'user_id',
'first_name',
'last_name',
'gender',
'level']
# remove rows with no user_id
user_data_clean = user_data[user_data['user_id']!= '']
# remove duplicates
user_data_duplicates_removed = user_data_clean.drop_duplicates(
'user_id',
keep='first')
user_df = user_data_duplicates_removed
# insert user records
for i, row in user_df.iterrows():
cur.execute(user_table_insert, row)
# insert songplay records
for index, row in df.iterrows():
# get songid and artistid from song and artist tables
cur.execute(song_select, (row.song, row.artist, row.length))
results = cur.fetchone()
if results:
songid, artistid = results
else:
songid, artistid = None, None
# insert songplay record
start_time = pd.to_datetime(
row.ts,
unit='ms').strftime(
'%Y-%m-%d %I:%M:%S')
songplay_data = ( start_time,
row.userId,
row.level,
str(songid),
str(artistid),
row.sessionId,
row.location,
row.userAgent)
cur.execute(songplay_table_insert, songplay_data)
def process_data(cur, conn, filepath, func):
"""Walk through the whole input data directory strcture,
Keyword arguments:
* cur -- reference to connected db.
* conn -- parameters (host, dbname, user, password) to
connect the db.
* filepath -- path to file to be processed
(data/song_data or data/log_data).
* func -- function to be called (process_song_data or
process_log_data)
Output:
* console printouts of the data processing.
"""
# get all files matching extension from directory
all_files = []
for root, dirs, files in os.walk(filepath):
files = glob.glob(os.path.join(root,'*.json'))
for f in files :
all_files.append(os.path.abspath(f))
# get total number of files found
num_files = len(all_files)
print('{} files found in {}'.format(num_files, filepath))
# iterate over files and process
for i, datafile in enumerate(all_files, 1):
func(cur, datafile)
conn.commit()
print('{}/{} files processed.'.format(i, num_files))
print('All {} files processed OK in {}'.format(num_files, filepath))
def main():
"""Connect to DB and call process_data (2x) to walk through
all the input data (data/song_data and data/log_data).
Keyword arguments:
* None
Output:
* All input data processed in DB tables.
"""
conn = psycopg2.connect(
"host=127.0.0.1 dbname=sparkifydb user=student password=student")
cur = conn.cursor()
process_data(cur, conn, filepath='data/song_data', func=process_song_file)
process_data(cur, conn, filepath='data/log_data', func=process_log_file)
conn.close()
if __name__ == "__main__":
main()