forked from whai362/PSENet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimg.py
521 lines (404 loc) · 14.6 KB
/
img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
#coding=utf-8
'''
@author: dengdan
'''
import cv2
import numpy as np
import logging
import math
import event
import util
IMREAD_GRAY = 0
IMREAD_COLOR = 1
IMREAD_UNCHANGED = -1
COLOR_WHITE =(255, 255, 255)
COLOR_BLACK = (0, 0, 0)
COLOR_GREEN = (0, 255, 0)
COLOR_RGB_RED = (255, 0, 0)
COLOR_BGR_RED = (0, 0, 255)
COLOR_RGB_BLUE = (0, 0, 255)
COLOR_BGR_BLUE = (255, 0, 0)
COLOR_RGB_YELLOW = (255, 255, 0)
COLOR_BGR_YELLOW = (0, 255, 255)
COLOR_RGB_GRAY = (47, 79, 79)
COLOR_RGB_PINK = (255, 192, 203)
def imread(path, rgb = False, mode = cv2.IMREAD_COLOR):
path = util.io.get_absolute_path(path)
img = cv2.imread(path, mode)
if img is None:
raise IOError('File not found:%s'%(path))
if rgb:
img = bgr2rgb(img)
return img
def imshow(winname, img, block = True, position = None, maximized = False, rgb = False):
if isinstance(img, str):
img = imread(path = img)
cv2.namedWindow(winname, cv2.WINDOW_NORMAL)
if rgb:
img = rgb2bgr(img)
cv2.imshow(winname, img)
if position is not None:
# cv2.moveWindow(winname, position[0], position[1])
move_win(winname, position)
if maximized:
maximize_win(winname)
if block:
# cv2.waitKey(0)
event.wait_key(" ")
cv2.destroyAllWindows()
def imwrite(path, img, rgb = False):
if rgb:
img = rgb2bgr(img)
path = util.io.get_absolute_path(path)
util.io.make_parent_dir(path)
cv2.imwrite(path, img)
def move_win(winname, position = (0, 0)):
"""
move pyplot window
"""
cv2.moveWindow(winname, position[0], position[1])
def maximize_win(winname):
cv2.setWindowProperty(winname, cv2.WND_PROP_FULLSCREEN, True);
def eq_color(target, color):
for i, c in enumerate(color):
if target[i] != color[i]:
return False
return True
def is_white(color):
for c in color:
if c < 255:
return False
return True
def black(shape):
if len(np.shape(shape)) >= 2:
shape = get_shape(shape)
shape = [int(v) for v in shape]
return np.zeros(shape, np.uint8)
def white(shape, value = 255):
if len(np.shape(shape)) >= 2:
shape = get_shape(shape)
return np.ones(shape, np.uint8) * np.uint8(value)
def bgr2rgb(img):
return cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
def rgb2bgr(img):
return cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
def rgb2gray(img):
return cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
def bgr2gray(img):
return cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
def ds_size(image_size, kernel_size, stride):
"""calculate the size of downsampling result"""
image_x, image_y = image_size
kernel_x, kernel_y = kernel_size
stride_x, stride_y = stride
def f(iw, kw, sw):
return int(np.floor((iw - kw) / sw) + 1)
output_size = (f(image_x, kernel_x, stride_x), f(image_y, kernel_y, stride_y))
return output_size
def get_roi(img, p1, p2):
"""
extract region of interest from an image.
p1, p2: two tuples standing for two opposite corners of the rectangle bounding the roi.
Their order is arbitrary.
"""
x1, y1 = p1
x2, y2 = p2
x_min = min([x1, x2])
y_min = min([y1, y2])
x_max = max([x1, x2]) + 1
y_max = max([y1, y2]) + 1
return img[y_min: y_max, x_min: x_max]
def rectangle(img, left_up, right_bottom, color, border_width = 1):
left_up = (int(left_up[0]), int(left_up[1]))
right_bottom = (int(right_bottom[0]), int(right_bottom[1]))
cv2.rectangle(img, left_up, right_bottom, color, border_width)
def circle(img, center, r, color, border_width = 1):
center = (int(center[0]), int(center[1]))
cv2.circle(img, center, r, color, border_width)
def render_points(img, points, color):
for p in points:
x, y = p
img[y][x] = color
def draw_contours(img, contours, idx = -1, color = 1, border_width = 1):
# img = img.copy()
cv2.drawContours(img, contours, idx, color, border_width)
return img
def get_contour_rect_box(contour):
x,y,w,h = cv2.boundingRect(contour)
return x, y, w, h
def get_contour_region_in_rect(img, contour):
x, y, w, h = get_contour_rect_box(contour)
lu, rb = (x, y), (x + w, y + h)
return get_roi(img, lu, rb)
def get_contour_min_area_box(contour):
rect = cv2.minAreaRect(contour)
box = cv2.cv.BoxPoints(rect)
box = np.int0(box)
return box
def get_contour_region_in_min_area_rect(img, cnt):
# find the min area rect of contour
rect = cv2.minAreaRect(cnt)
angle = rect[-1]
box = cv2.cv.BoxPoints(rect)
box_cnt = points_to_contour(box)
# find the rectangle containing box_cnt, and set it as ROI
outer_rect = get_contour_rect_box(box_cnt)
x, y, w, h = outer_rect
img = get_roi(img, (x, y), (x + w, y + h))
box = [(ox - x, oy - y) for (ox, oy) in box]
# rotate ROI and corner points
rows, cols = get_shape(img)
M = cv2.getRotationMatrix2D((cols/2,rows/2), angle, scale = 1)
dst = cv2.warpAffine(img,M,(cols,rows))
bar_xy = np.hstack((box, np.ones((4, 1))))
new_corners = np.dot(M, np.transpose(bar_xy))
new_corners = util.dtype.int(np.transpose(new_corners))
# cnt = points_to_contour(new_corners)
xs = new_corners[:, 0]
ys = new_corners[:, 1]
lu = (min(xs), min(ys))
rb = (max(xs), max(ys))
return get_roi(dst, lu, rb)
def contour_to_points(contour):
return np.asarray([c[0] for c in contour])
def points_to_contour(points):
contours = [[list(p)]for p in points]
return np.asarray(contours, dtype = np.int32)
def points_to_contours(points):
return np.asarray([points_to_contour(points)])
def get_contour_region_iou(I, cnt1, cnt2):
"""
calculate the iou of two contours
"""
mask1 = util.img.black(I)
draw_contours(mask1, [cnt1], color = 1, border_width = -1)
mask2 = util.img.black(I)
draw_contours(mask2, [cnt2], color = 1, border_width = -1)
union_mask = ((mask1 + mask2) >=1) * 1
intersect_mask = (mask1 * mask2 >= 1) * 1
return np.sum(intersect_mask) * 1.0 / np.sum(union_mask)
def fill_bbox(img, box, color = 1):
"""
filling a bounding box with color.
box: a list of 4 points, in clockwise order, as the four vertice of a bounding box
"""
util.test.assert_equal(np.shape(box), (4, 2))
cnt = to_contours(box)
draw_contours(img, cnt, color = color, border_width = -1)
def get_rect_points(left_up, right_bottom):
"""
given the left up and right bottom points of a rectangle, return its four points
"""
right_bottom, left_up = np.asarray(right_bottom), np.asarray(left_up)
w, h = right_bottom - left_up
x, y = left_up
points = [(x, y), (x + w, y), (x + w, y + h), (x, y + h)]
return points
def rect_perimeter(left_up, right_bottom):
"""
calculate the perimeter of the rectangle described by its left-up and right-bottom point.
"""
return sum(np.asarray(right_bottom) - np.asarray(left_up)) * 2
def rect_area(left_up, right_bottom):
wh = np.asarray(right_bottom) - np.asarray(left_up) + 1
return np.prod(wh)
def apply_mask(img, mask):
"""
the img will be masked in place.
"""
c = np.shape(img)[-1]
for i in range(c):
img[:, :, i] = img[:, :, i] * mask
return img
def get_shape(img):
"""
return the height and width of an image
"""
return np.shape(img)[0:2]
def get_wh(img):
return np.shape(img)[0:2][::-1]
def get_value(img, x, y = None):
if y == None:
y = x[1]
x = x[0]
return img[y][x]
def set_value(img, xy, val):
x, y = xy
img[y][x] = val
def filter2D(img, kernel):
dst = cv2.filter2D(img, -1, kernel)
return dst
def average_blur(img, shape = (5, 5)):
return cv2.blur(img, shape)
def gaussian_blur(img, shape = (5, 5), sigma = 0):
# sigma --> sigmaX, sigmaY
blur = cv2.GaussianBlur(img,shape, sigma)
return blur
def bilateral_blur(img, d = 9, sigmaColor = 75, sigmaSpace = 75):
dst = cv2.bilateralFilter(img, d, sigmaColor, sigmaSpace)
return dst
BLUR_AVERAGE = 'average'
BLUR_GAUSSIAN = 'gaussian'
BLUR_BILATERAL = 'bilateral'
_blur_dict = {
BLUR_AVERAGE: average_blur,
BLUR_GAUSSIAN: gaussian_blur,
BLUR_BILATERAL: bilateral_blur
}
def blur(img, blur_type):
fn = _blur_dict[blur_type]
return fn(img)
def put_text(img, text, pos, scale = 1, color = COLOR_WHITE, thickness = 1):
pos = np.int32(pos)
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img = img, text = text, org = tuple(pos), fontFace = font, fontScale = scale, color = color, thickness = thickness)
def resize(img, f = None, fx = None, fy = None, size = None, interpolation = cv2.INTER_LINEAR):
"""
size: (w, h)
"""
h, w = get_shape(img)
if fx != None and fy != None:
return cv2.resize(img, None, fx = fx, fy = fy, interpolation = interpolation)
if size != None:
size = util.dtype.int(size)
# size = (size[1], size[0])
size = tuple(size)
return cv2.resize(img, size, interpolation = interpolation)
return cv2.resize(img, None, fx = f, fy = f, interpolation = interpolation)
def translate(img, delta_x, delta_y, size = None):
M = np.float32([[1,0, delta_x],[0,1, delta_y]])
if size == None:
size = get_wh(img)
dst = cv2.warpAffine(img,M, size)
return dst
def rotate_about_center(src, angle, scale=1.):
"""https://www.oschina.net/translate/opencv-rotation"""
w = src.shape[1]
h = src.shape[0]
rangle = np.deg2rad(angle) # angle in radians
# now calculate new image width and height
nw = (abs(np.sin(rangle)*h) + abs(np.cos(rangle)*w))*scale
nh = (abs(np.cos(rangle)*h) + abs(np.sin(rangle)*w))*scale
# ask OpenCV for the rotation matrix
rot_mat = cv2.getRotationMatrix2D((nw*0.5, nh*0.5), angle, scale)
# calculate the move from the old center to the new center combined
# with the rotation
rot_move = np.dot(rot_mat, np.array([(nw-w)*0.5, (nh-h)*0.5,0]))
# the move only affects the translation, so update the translation
# part of the transform
rot_mat[0,2] += rot_move[0]
rot_mat[1,2] += rot_move[1]
return cv2.warpAffine(src, rot_mat, (int(math.ceil(nw)), int(math.ceil(nh))), flags=cv2.INTER_LANCZOS4), rot_mat
def get_rect_iou(rects1, rects2):
"""
calculate the iou between rects1 and rects2
each rect consists of four points:[min_x, min_y, max_x, max_y]
return: a iou matrix, len(rects1) * len(rects2)
"""
rects1, rects2 = np.asarray(rects1), np.asarray(rects2)
def _to_matrix(p, ps):
p = np.ones((len(ps), 1)) * p
ps = np.reshape(ps, (len(ps), 1))
temp =np.hstack([p, ps])
return temp
def _get_max(p, ps):
return np.max(_to_matrix(p, ps), axis = 1)
def _get_min(p, ps):
return np.min(_to_matrix(p, ps), axis = 1)
def _get_area(rect):
w, h = rect[:, 2] - rect[:, 0] + 1.0 , rect[:, 3] - rect[:, 1] + 1.0
return w * h
def _get_inter(rect1, rects2):
x1 = _get_max(rect1[0], rects2[:, 0])
y1 = _get_max(rect1[1], rects2[:, 1])
x2 = _get_min(rect1[2], rects2[:, 2])
y2 = _get_min(rect1[3], rects2[:, 3])
w,h = x2-x1 +1, y2 - y1 + 1
areas = w * h
areas[np.where(w < 0)] = 0
areas[np.where(h < 0)] = 0
return areas
area2 = _get_area(rects2)
area1 = _get_area(rects1)
iou = np.zeros((len(rects1), len(rects2)))
for ri in range(len(rects1)):
inter = _get_inter(rects1[ri, :], rects2)
union = area1[ri] + area2 - inter
iou[ri, :] = np.transpose( inter / union)
return iou
def find_contours(mask):
mask = np.asarray(mask, dtype = np.uint8)
mask = mask.copy()
contours, _ = cv2.findContours(mask, mode = cv2.RETR_CCOMP,
method = cv2.CHAIN_APPROX_SIMPLE)
return contours
def find_two_level_contours(mask):
mask = mask.copy()
contours, tree = cv2.findContours(mask, mode = cv2.RETR_CCOMP,
method = cv2.CHAIN_APPROX_SIMPLE)
return contours, tree
def is_in_contour(point, cnt):
"""tell whether a point is in contour or not.
In-contour here includes both the 'in contour' and 'on contour' cases.
point:(x, y)
cnt: a cv2 contour
"""
# doc of pointPolygonTest: http://docs.opencv.org/2.4/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=pointpolygontest#cv.PointPolygonTest
# the last argument means only tell if in or not, without calculating the shortest distance
in_cnt = cv2.pointPolygonTest(cnt, point, False)
return in_cnt >= 0;
def convex_hull(contour):
hull = cv2.convexHull(contour, returnPoints=1)
return hull
def random_color_3():
c = util.rand.randint(low = 0, high = 255, shape = (3, ))
# c = np.uint8(c)
return c
def get_contour_area(cnt):
return cv2.contourArea(cnt)
def is_valid_jpg(jpg_file):
with open(jpg_file, 'rb') as f:
f.seek(-2, 2)
return f.read() == '\xff\xd9'
def rotate_point_by_90(x, y, k, w = 1.0, h = 1.0):
"""
Rotate a point xy on an image by k * 90
degrees.
Params:
x, y: a point, (x, y). If not normalized within 0 and 1, the
width and height of the image should be specified clearly.
w, h: the width and height of image
k: k * 90 degrees will be rotated
"""
k = k % 4
if k == 0:
return x, y
elif k == 1:
return y, w - x
elif k == 2:
return w - x, h - y
elif k == 3:
return h - y, x
def min_area_rect(xs, ys):
"""
Args:
xs: numpy ndarray with shape=(N,4). N is the number of oriented bboxes. 4 contains [x1, x2, x3, x4]
ys: numpy ndarray with shape=(N,4), [y1, y2, y3, y4]
Note that [(x1, y1), (x2, y2), (x3, y3), (x4, y4)] can represent an oriented bbox.
Return:
the oriented rects sorrounding the box, in the format:[cx, cy, w, h, theta].
"""
xs = np.asarray(xs, dtype = np.float32)
ys = np.asarray(ys, dtype = np.float32)
num_rects = xs.shape[0]
box = np.empty((num_rects, 5))#cx, cy, w, h, theta
for idx in xrange(num_rects):
points = zip(xs[idx, :], ys[idx, :])
cnt = points_to_contour(points)
rect = cv2.minAreaRect(cnt)
cx, cy = rect[0]
w, h = rect[1]
theta = rect[2]
box[idx, :] = [cx, cy, w, h, theta]
box = np.asarray(box, dtype = xs.dtype)
return box