forked from karpathy/llm.c
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cudnn_att.cpp
312 lines (262 loc) · 12.9 KB
/
cudnn_att.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
// all cudnn-related functions are in this file, so that they don't need to be recompiled everytime
// we change some unrelated piece of the code.
// TODO this currently duplicates some of the utilities from the main file
#include <cudnn_frontend.h>
#include <cuda_bf16.h>
#include <nvtx3/nvToolsExt.h>
namespace fe = cudnn_frontend;
// Specific configurations based on the enabled precision
#if defined(ENABLE_FP32)
typedef float floatX;
static_assert(false, "cuDNN is not supported in FP32 mode.")
// use fp16 (note: this may require gradient scaler, currently not implemented!)
#elif defined(ENABLE_FP16)
typedef half floatX;
#define CUBLAS_LOWP CUDA_R_16F
#define CUDNN_16BIT fe::DataType_t::HALF
#else // Default to bfloat16
typedef __nv_bfloat16 floatX;
#define CUDNN_16BIT fe::DataType_t::BFLOAT16
#endif
// CUDA error checking
static void cudaCheck(cudaError_t error, const char *file, int line) {
if (error != cudaSuccess) {
printf("[CUDA ERROR] at file %s:%d:\n%s\n", file, line,
cudaGetErrorString(error));
exit(EXIT_FAILURE);
}
};
#define cudaCheck(err) (cudaCheck(err, __FILE__, __LINE__))
// Profiler utils
namespace {
class NvtxRange {
public:
NvtxRange(const char* s) { nvtxRangePush(s); }
NvtxRange(const std::string& base_str, int number) {
std::string range_string = base_str + " " + std::to_string(number);
nvtxRangePush(range_string.c_str());
}
~NvtxRange() { nvtxRangePop(); }
};
}
#define NVTX_RANGE_FN() NvtxRange nvtx_range(__FUNCTION__)
static cudnnHandle_t cudnn_handle;
static size_t cudnn_workspace_size = 0; // dynamically allocated as needed (up to 256MiB!)
static void* cudnn_workspace = NULL;
#define checkCudnnErr(err) assert((int)err == 0);
static void checkCudnnFE(fe::error_object e, const char *file, int line) {
if(!e.is_good()) {
printf("[CUDNN ERROR] at file %s:%d:\n%s\n", file, line, e.err_msg.c_str());
exit(EXIT_FAILURE);
}
}
#define checkCudnnFE(err) checkCudnnFE(err, __FILE__, __LINE__)
enum UIDs {
Q_UID,
K_UID,
V_UID,
Attn_scale_UID,
O_UID,
Stats_UID,
dO_UID,
dQ_UID,
dK_UID,
dV_UID
};
// Need a cache because graph->build_operation_graph() is slow but everything else seems fast
using cache_type_fwd = std::map<std::tuple<int,int,int,int, int>, std::shared_ptr<fe::graph::Graph>>;
using cache_type_bwd = std::map<std::tuple<int,int,int,int>, std::shared_ptr<fe::graph::Graph>>;
// Loosely based on cuDNN frontend samples functions and massively simplified
auto lookup_cache_or_build_graph_fwd(int B,int H,int T,int HS, int is_inference_only) {
static cache_type_fwd user_maintained_cache_fwd;
auto key = std::make_tuple(B, H, T, HS, is_inference_only);
auto it = user_maintained_cache_fwd.find(key);
if (it != user_maintained_cache_fwd.end()) {
return it->second;
}
auto graph = std::make_shared<fe::graph::Graph>();
graph->set_io_data_type(CUDNN_16BIT)
.set_intermediate_data_type(fe::DataType_t::FLOAT)
.set_compute_data_type(fe::DataType_t::FLOAT);
// QKV is (B, T, 3, NH, HS) which cuDNN can handle directly without an external permute
auto Q = graph->tensor(fe::graph::Tensor_attributes().set_name("Q")
.set_dim({B, H, T, HS})
.set_uid(Q_UID)
.set_stride({3 * H * HS * T, HS, 3 * H * HS, 1}));
auto K = graph->tensor(fe::graph::Tensor_attributes().set_name("K")
.set_dim({B, H, T, HS})
.set_uid(K_UID)
.set_stride({3 * H * HS * T, HS, 3 * H * HS, 1}));
auto V = graph->tensor(fe::graph::Tensor_attributes().set_name("V")
.set_dim({B, H, T, HS})
.set_uid(V_UID)
.set_stride({3 * H * HS * T, HS, 3 * H * HS, 1}));
auto attn_scale = graph->tensor(fe::graph::Tensor_attributes().set_name("attn_scale")
.set_dim({1, 1, 1, 1})
.set_stride({1, 1, 1, 1})
.set_uid(Attn_scale_UID)
.set_is_pass_by_value(true)
.set_data_type(fe::DataType_t::FLOAT));
auto sdpa_options = fe::graph::SDPA_attributes().set_name("flash_attention");
sdpa_options.set_is_inference(is_inference_only);
sdpa_options.set_attn_scale(attn_scale);
sdpa_options.set_causal_mask(true);
// Create the graph operation and get the output tensors back
auto [O, stats] = graph->sdpa(Q, K, V, sdpa_options);
// Output is (B, T, NH, HS) BF16/FP16 and stats for backward pass is (B, NH, T) FP32
O->set_output(true).set_dim({B, H, T, HS}).set_stride({H * HS * T, HS, H * HS, 1}).set_uid(O_UID);
assert(stats == nullptr || is_inference_only == false);
if (is_inference_only == false) {
stats->set_output(true).set_data_type(fe::DataType_t::FLOAT)
.set_dim({B, H, T, 1})
.set_stride({H * T, T, 1, 1})
.set_uid(Stats_UID);
}
checkCudnnFE(graph->validate());
// Build the operation graph and execution part (this is the VERY SLOW PART)
checkCudnnFE(graph->build_operation_graph(cudnn_handle));
auto plans = graph->create_execution_plans({fe::HeurMode_t::A});
checkCudnnFE(graph->check_support(cudnn_handle));
checkCudnnFE(graph->build_plans(cudnn_handle));
// Reallocate the workspace if the required size is greater than the current workspace
// In H100 this may be around 16B
if (graph->get_workspace_size() > cudnn_workspace_size) {
if (cudnn_workspace_size > 0) {
cudaCheck(cudaFree(cudnn_workspace));
}
cudnn_workspace_size = graph->get_workspace_size();
cudaCheck(cudaMalloc(&cudnn_workspace, cudnn_workspace_size));
}
user_maintained_cache_fwd.insert({key, graph});
return graph;
}
auto lookup_cache_or_build_graph_bwd(int B, int NH, int T, int HS) {
static cache_type_bwd user_maintained_cache_bwd;
auto key = std::make_tuple(B, NH, T, HS);
auto it = user_maintained_cache_bwd.find(key);
if (it != user_maintained_cache_bwd.end()) {
return it->second;
}
auto graph = std::make_shared<fe::graph::Graph>();
graph->set_io_data_type(CUDNN_16BIT)
.set_intermediate_data_type(fe::DataType_t::FLOAT)
.set_compute_data_type(fe::DataType_t::FLOAT);
// (B, N, 3, NH, HS)
// must come from inp (which means we also need to convert THAT to FP16)
auto Q = graph->tensor(fe::graph::Tensor_attributes().set_name("Q")
.set_dim({B, NH, T, HS})
.set_uid(Q_UID)
.set_stride({3 * NH * HS * T, HS, 3 * NH * HS, 1}));
auto K = graph->tensor(fe::graph::Tensor_attributes().set_name("K")
.set_dim({B, NH, T, HS})
.set_uid(K_UID)
.set_stride({3 * NH * HS * T, HS, 3 * NH * HS, 1}));
auto V = graph->tensor(fe::graph::Tensor_attributes().set_name("V")
.set_dim({B, NH, T, HS})
.set_uid(V_UID)
.set_stride({3 * NH * HS * T, HS, 3 * NH * HS, 1}));
auto O = graph->tensor(fe::graph::Tensor_attributes().set_name("O")
.set_dim({B, NH, T, HS})
.set_uid(O_UID)
.set_stride({NH * HS * T, HS, NH * HS, 1}));
auto dO = graph->tensor(fe::graph::Tensor_attributes().set_name("dO")
.set_dim({B, NH, T, HS})
.set_uid(dO_UID)
.set_stride({NH * HS * T, HS, NH * HS, 1}));
auto stats = graph->tensor(fe::graph::Tensor_attributes().set_name("stats")
.set_dim({B, NH, T, 1})
.set_uid(Stats_UID)
.set_stride({NH * T, T, 1, 1})
.set_data_type(fe::DataType_t::FLOAT));
auto attn_scale = graph->tensor(fe::graph::Tensor_attributes().set_name("attn_scale")
.set_dim({1, 1, 1, 1})
.set_stride({1, 1, 1, 1})
.set_is_pass_by_value(true)
.set_uid(Attn_scale_UID)
.set_data_type(fe::DataType_t::FLOAT));
auto sdpa_backward_options = fe::graph::SDPA_backward_attributes().set_name("flash_attention_backward")
.set_causal_mask(true)
.set_attn_scale(attn_scale);
// Create the graph operation and get the output tensors back
auto [dQ, dK, dV] = graph->sdpa_backward(Q, K, V, O, dO, stats, sdpa_backward_options);
dQ->set_output(true).set_dim({B, NH, T, HS}).set_stride({3 * NH * HS * T, HS, 3 * NH * HS, 1}).set_uid(dQ_UID);
dK->set_output(true).set_dim({B, NH, T, HS}).set_stride({3 * NH * HS * T, HS, 3 * NH * HS, 1}).set_uid(dK_UID);
dV->set_output(true).set_dim({B, NH, T, HS}).set_stride({3 * NH * HS * T, HS, 3 * NH * HS, 1}).set_uid(dV_UID);
checkCudnnFE(graph->validate());
// Build the operation graph and execution part (this is the VERY SLOW PART)
checkCudnnFE(graph->build_operation_graph(cudnn_handle));
auto plans = graph->create_execution_plans({fe::HeurMode_t::A});
checkCudnnFE(graph->check_support(cudnn_handle));
checkCudnnFE(graph->build_plans(cudnn_handle));
// Reallocate the workspace if the required size is greater than the current workspace
// By default, cuDNN uses up to 256MiB of workspace, so we don't want to just allocate the maximum
if (graph->get_workspace_size() > cudnn_workspace_size) {
if (cudnn_workspace_size > 0) {
cudaCheck(cudaFree(cudnn_workspace));
}
cudnn_workspace_size = graph->get_workspace_size();
cudaCheck(cudaMalloc(&cudnn_workspace, cudnn_workspace_size));
}
user_maintained_cache_bwd.insert({key, graph});
return graph;
}
void attention_forward_cudnn(floatX* out, // output: (B, T, NH, HS)
float* stats, // output for backward pass: (B, NH, T)
floatX* inp, // input: (B, T, 3, NH, HS) QKV
int B, int T, int NH, int C) {
NVTX_RANGE_FN();
int HS = C / NH; // number of features per head
bool is_inference_only = (stats == nullptr);
// Get graph and tensors from cache (or generate it on first use)
auto graph = lookup_cache_or_build_graph_fwd(B, NH, T, HS, is_inference_only);
// Prepare all the tensor pointers for executing the graph
void* devPtrQ = inp;
void* devPtrK = (inp + C);
void* devPtrV = (inp + 2 * C);
float attn_scale_cpu = 1.0 / sqrtf(HS);
void* devPtrO = out;
// Build variant pack
std::unordered_map<int64_t , void*> variant_pack = {
{Q_UID, devPtrQ}, {K_UID, devPtrK}, {V_UID, devPtrV}, {Attn_scale_UID, &attn_scale_cpu}, {O_UID, devPtrO}};
// Add the stats tensor unless we are only doing inference (only needed for backward pass)
if (is_inference_only == false) {
variant_pack[Stats_UID] = stats;
}
// Execute graph
checkCudnnFE(graph->execute(cudnn_handle, variant_pack, cudnn_workspace));
cudaCheck(cudaGetLastError());
}
void attention_backward_cudnn(floatX* dqkvr, // output
floatX* dout, floatX* qkvr, floatX* o, float* stats, // inputs
int B, int T, int NH, int C) {
NVTX_RANGE_FN();
int HS = C / NH; // number of features per head
// Get graph and tensors from cache (or generate it on first use)
auto graph = lookup_cache_or_build_graph_bwd(B, NH, T, HS);
// Prepare all the tensor pointers for executing the graph
void* devPtrQ = qkvr;
void* devPtrK = (qkvr + NH * HS);
void* devPtrV = (qkvr + 2 * NH * HS);
void* devPtrO = o;
void* devPtrdO = dout;
void* devPtrStats = stats;
float attn_scale_cpu = 1.0 / sqrtf(HS);
void* devPtrdQ = dqkvr;
void* devPtrdK = (dqkvr + NH * HS);
void* devPtrdV = (dqkvr + 2 * NH * HS);
// Build variant pack that links each tensor to its data pointer
std::unordered_map<int64_t, void*> variant_pack = {
{Q_UID, devPtrQ}, {K_UID, devPtrK}, {V_UID, devPtrV}, {O_UID, devPtrO}, {dO_UID, devPtrdO}, {Stats_UID, devPtrStats},
{dQ_UID, devPtrdQ}, {dK_UID, devPtrdK}, {dV_UID, devPtrdV},
{Attn_scale_UID, &attn_scale_cpu}};
// Execute graph
checkCudnnFE(graph->execute(cudnn_handle, variant_pack, cudnn_workspace));
cudaCheck(cudaGetLastError());
}
void create_cudnn() {
checkCudnnErr(cudnnCreate(&cudnn_handle));
}
void destroy_cudnn() {
if (cudnn_workspace != NULL) { cudaCheck(cudaFree(cudnn_workspace)); }
checkCudnnErr(cudnnDestroy(cudnn_handle));
}