forked from flutter/engine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdl_builder.cc
2071 lines (1952 loc) · 77.8 KB
/
dl_builder.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2013 The Flutter Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "flutter/display_list/dl_builder.h"
#include "flutter/display_list/display_list.h"
#include "flutter/display_list/dl_blend_mode.h"
#include "flutter/display_list/dl_op_flags.h"
#include "flutter/display_list/dl_op_records.h"
#include "flutter/display_list/effects/dl_color_source.h"
#include "flutter/display_list/utils/dl_accumulation_rect.h"
#include "fml/logging.h"
#include "third_party/skia/include/core/SkScalar.h"
namespace flutter {
#define DL_BUILDER_PAGE 4096
// CopyV(dst, src,n, src,n, ...) copies any number of typed srcs into dst.
static void CopyV(void* dst) {}
template <typename S, typename... Rest>
static void CopyV(void* dst, const S* src, int n, Rest&&... rest) {
FML_DCHECK(((uintptr_t)dst & (alignof(S) - 1)) == 0)
<< "Expected " << dst << " to be aligned for at least " << alignof(S)
<< " bytes.";
// If n is 0, there is nothing to copy into dst from src.
if (n > 0) {
memcpy(dst, src, n * sizeof(S));
dst = reinterpret_cast<void*>(reinterpret_cast<uint8_t*>(dst) +
n * sizeof(S));
}
// Repeat for the next items, if any
CopyV(dst, std::forward<Rest>(rest)...);
}
static constexpr inline bool is_power_of_two(int value) {
return (value & (value - 1)) == 0;
}
template <typename T, typename... Args>
void* DisplayListBuilder::Push(size_t pod, Args&&... args) {
size_t size = SkAlignPtr(sizeof(T) + pod);
FML_CHECK(size < (1 << 24));
if (used_ + size > allocated_) {
static_assert(is_power_of_two(DL_BUILDER_PAGE),
"This math needs updating for non-pow2.");
// Next greater multiple of DL_BUILDER_PAGE.
allocated_ = (used_ + size + DL_BUILDER_PAGE) & ~(DL_BUILDER_PAGE - 1);
storage_.realloc(allocated_);
FML_CHECK(storage_.get());
memset(storage_.get() + used_, 0, allocated_ - used_);
}
FML_CHECK(used_ + size <= allocated_);
auto op = reinterpret_cast<T*>(storage_.get() + used_);
used_ += size;
new (op) T{std::forward<Args>(args)...};
op->type = T::kType;
op->size = size;
render_op_count_ += T::kRenderOpInc;
depth_ += T::kDepthInc * render_op_depth_cost_;
op_index_++;
return op + 1;
}
sk_sp<DisplayList> DisplayListBuilder::Build() {
while (save_stack_.size() > 1) {
restore();
}
size_t bytes = used_;
int count = render_op_count_;
size_t nested_bytes = nested_bytes_;
int nested_count = nested_op_count_;
uint32_t total_depth = depth_;
bool opacity_compatible = current_layer().is_group_opacity_compatible();
bool is_safe = is_ui_thread_safe_;
bool affects_transparency = current_layer().affects_transparent_layer;
bool root_has_backdrop_filter = current_layer().contains_backdrop_filter;
DlBlendMode max_root_blend_mode = current_layer().max_blend_mode;
sk_sp<DlRTree> rtree;
SkRect bounds;
if (rtree_data_.has_value()) {
auto& rects = rtree_data_->rects;
auto& indices = rtree_data_->indices;
rtree = sk_make_sp<DlRTree>(rects.data(), rects.size(), indices.data(),
[](int id) { return id >= 0; });
// RTree bounds may be tighter due to applying filter bounds
// adjustments to each op as we restore layers rather than to
// the entire layer bounds.
bounds = rtree->bounds();
rtree_data_.reset();
} else {
bounds = current_layer().global_space_accumulator.bounds();
}
used_ = allocated_ = render_op_count_ = op_index_ = 0;
nested_bytes_ = nested_op_count_ = 0;
depth_ = 0;
is_ui_thread_safe_ = true;
current_opacity_compatibility_ = true;
render_op_depth_cost_ = 1u;
current_ = DlPaint();
save_stack_.pop_back();
Init(rtree != nullptr);
storage_.realloc(bytes);
return sk_sp<DisplayList>(new DisplayList(
std::move(storage_), bytes, count, nested_bytes, nested_count,
total_depth, bounds, opacity_compatible, is_safe, affects_transparency,
max_root_blend_mode, root_has_backdrop_filter, std::move(rtree)));
}
static constexpr DlRect kEmpty = DlRect();
static const DlRect& ProtectEmpty(const SkRect& rect) {
// isEmpty protects us against NaN while we normalize any empty cull rects
return rect.isEmpty() ? kEmpty : ToDlRect(rect);
}
DisplayListBuilder::DisplayListBuilder(const SkRect& cull_rect,
bool prepare_rtree)
: original_cull_rect_(ProtectEmpty(cull_rect)) {
Init(prepare_rtree);
}
void DisplayListBuilder::Init(bool prepare_rtree) {
FML_DCHECK(save_stack_.empty());
FML_DCHECK(!rtree_data_.has_value());
save_stack_.emplace_back(original_cull_rect_);
current_info().is_nop = original_cull_rect_.IsEmpty();
if (prepare_rtree) {
rtree_data_.emplace();
}
}
DisplayListBuilder::~DisplayListBuilder() {
uint8_t* ptr = storage_.get();
if (ptr) {
DisplayList::DisposeOps(ptr, ptr + used_);
}
}
SkISize DisplayListBuilder::GetBaseLayerSize() const {
return ToSkISize(DlIRect::RoundOut(original_cull_rect_).GetSize());
}
SkImageInfo DisplayListBuilder::GetImageInfo() const {
SkISize size = GetBaseLayerSize();
return SkImageInfo::MakeUnknown(size.width(), size.height());
}
void DisplayListBuilder::onSetAntiAlias(bool aa) {
current_.setAntiAlias(aa);
Push<SetAntiAliasOp>(0, aa);
}
void DisplayListBuilder::onSetInvertColors(bool invert) {
current_.setInvertColors(invert);
Push<SetInvertColorsOp>(0, invert);
UpdateCurrentOpacityCompatibility();
}
void DisplayListBuilder::onSetStrokeCap(DlStrokeCap cap) {
current_.setStrokeCap(cap);
Push<SetStrokeCapOp>(0, cap);
}
void DisplayListBuilder::onSetStrokeJoin(DlStrokeJoin join) {
current_.setStrokeJoin(join);
Push<SetStrokeJoinOp>(0, join);
}
void DisplayListBuilder::onSetDrawStyle(DlDrawStyle style) {
current_.setDrawStyle(style);
Push<SetStyleOp>(0, style);
}
void DisplayListBuilder::onSetStrokeWidth(float width) {
current_.setStrokeWidth(width);
Push<SetStrokeWidthOp>(0, width);
}
void DisplayListBuilder::onSetStrokeMiter(float limit) {
current_.setStrokeMiter(limit);
Push<SetStrokeMiterOp>(0, limit);
}
void DisplayListBuilder::onSetColor(DlColor color) {
current_.setColor(color);
Push<SetColorOp>(0, color);
}
void DisplayListBuilder::onSetBlendMode(DlBlendMode mode) {
current_.setBlendMode(mode);
Push<SetBlendModeOp>(0, mode);
UpdateCurrentOpacityCompatibility();
}
void DisplayListBuilder::onSetColorSource(const DlColorSource* source) {
if (source == nullptr) {
current_.setColorSource(nullptr);
Push<ClearColorSourceOp>(0);
} else {
current_.setColorSource(source->shared());
is_ui_thread_safe_ = is_ui_thread_safe_ && source->isUIThreadSafe();
switch (source->type()) {
case DlColorSourceType::kColor: {
const DlColorColorSource* color_source = source->asColor();
current_.setColorSource(nullptr);
setColor(color_source->color());
break;
}
case DlColorSourceType::kImage: {
const DlImageColorSource* image_source = source->asImage();
FML_DCHECK(image_source);
Push<SetImageColorSourceOp>(0, image_source);
break;
}
case DlColorSourceType::kLinearGradient: {
const DlLinearGradientColorSource* linear = source->asLinearGradient();
FML_DCHECK(linear);
void* pod = Push<SetPodColorSourceOp>(linear->size());
new (pod) DlLinearGradientColorSource(linear);
break;
}
case DlColorSourceType::kRadialGradient: {
const DlRadialGradientColorSource* radial = source->asRadialGradient();
FML_DCHECK(radial);
void* pod = Push<SetPodColorSourceOp>(radial->size());
new (pod) DlRadialGradientColorSource(radial);
break;
}
case DlColorSourceType::kConicalGradient: {
const DlConicalGradientColorSource* conical =
source->asConicalGradient();
FML_DCHECK(conical);
void* pod = Push<SetPodColorSourceOp>(conical->size());
new (pod) DlConicalGradientColorSource(conical);
break;
}
case DlColorSourceType::kSweepGradient: {
const DlSweepGradientColorSource* sweep = source->asSweepGradient();
FML_DCHECK(sweep);
void* pod = Push<SetPodColorSourceOp>(sweep->size());
new (pod) DlSweepGradientColorSource(sweep);
break;
}
case DlColorSourceType::kRuntimeEffect: {
const DlRuntimeEffectColorSource* effect = source->asRuntimeEffect();
FML_DCHECK(effect);
Push<SetRuntimeEffectColorSourceOp>(0, effect);
break;
}
#ifdef IMPELLER_ENABLE_3D
case DlColorSourceType::kScene: {
const DlSceneColorSource* scene = source->asScene();
FML_DCHECK(scene);
Push<SetSceneColorSourceOp>(0, scene);
break;
}
#endif // IMPELLER_ENABLE_3D
}
}
}
void DisplayListBuilder::onSetImageFilter(const DlImageFilter* filter) {
if (filter == nullptr) {
current_.setImageFilter(nullptr);
Push<ClearImageFilterOp>(0);
} else {
current_.setImageFilter(filter->shared());
switch (filter->type()) {
case DlImageFilterType::kBlur: {
const DlBlurImageFilter* blur_filter = filter->asBlur();
FML_DCHECK(blur_filter);
void* pod = Push<SetPodImageFilterOp>(blur_filter->size());
new (pod) DlBlurImageFilter(blur_filter);
break;
}
case DlImageFilterType::kDilate: {
const DlDilateImageFilter* dilate_filter = filter->asDilate();
FML_DCHECK(dilate_filter);
void* pod = Push<SetPodImageFilterOp>(dilate_filter->size());
new (pod) DlDilateImageFilter(dilate_filter);
break;
}
case DlImageFilterType::kErode: {
const DlErodeImageFilter* erode_filter = filter->asErode();
FML_DCHECK(erode_filter);
void* pod = Push<SetPodImageFilterOp>(erode_filter->size());
new (pod) DlErodeImageFilter(erode_filter);
break;
}
case DlImageFilterType::kMatrix: {
const DlMatrixImageFilter* matrix_filter = filter->asMatrix();
FML_DCHECK(matrix_filter);
void* pod = Push<SetPodImageFilterOp>(matrix_filter->size());
new (pod) DlMatrixImageFilter(matrix_filter);
break;
}
case DlImageFilterType::kCompose:
case DlImageFilterType::kLocalMatrix:
case DlImageFilterType::kColorFilter: {
Push<SetSharedImageFilterOp>(0, filter);
break;
}
}
}
}
void DisplayListBuilder::onSetColorFilter(const DlColorFilter* filter) {
if (filter == nullptr) {
current_.setColorFilter(nullptr);
Push<ClearColorFilterOp>(0);
} else {
current_.setColorFilter(filter->shared());
switch (filter->type()) {
case DlColorFilterType::kBlend: {
const DlBlendColorFilter* blend_filter = filter->asBlend();
FML_DCHECK(blend_filter);
void* pod = Push<SetPodColorFilterOp>(blend_filter->size());
new (pod) DlBlendColorFilter(blend_filter);
break;
}
case DlColorFilterType::kMatrix: {
const DlMatrixColorFilter* matrix_filter = filter->asMatrix();
FML_DCHECK(matrix_filter);
void* pod = Push<SetPodColorFilterOp>(matrix_filter->size());
new (pod) DlMatrixColorFilter(matrix_filter);
break;
}
case DlColorFilterType::kSrgbToLinearGamma: {
void* pod = Push<SetPodColorFilterOp>(filter->size());
new (pod) DlSrgbToLinearGammaColorFilter();
break;
}
case DlColorFilterType::kLinearToSrgbGamma: {
void* pod = Push<SetPodColorFilterOp>(filter->size());
new (pod) DlLinearToSrgbGammaColorFilter();
break;
}
}
}
UpdateCurrentOpacityCompatibility();
}
void DisplayListBuilder::onSetMaskFilter(const DlMaskFilter* filter) {
if (filter == nullptr) {
current_.setMaskFilter(nullptr);
render_op_depth_cost_ = 1u;
Push<ClearMaskFilterOp>(0);
} else {
current_.setMaskFilter(filter->shared());
render_op_depth_cost_ = 2u;
switch (filter->type()) {
case DlMaskFilterType::kBlur: {
const DlBlurMaskFilter* blur_filter = filter->asBlur();
FML_DCHECK(blur_filter);
void* pod = Push<SetPodMaskFilterOp>(blur_filter->size());
new (pod) DlBlurMaskFilter(blur_filter);
break;
}
}
}
}
void DisplayListBuilder::SetAttributesFromPaint(
const DlPaint& paint,
const DisplayListAttributeFlags flags) {
if (flags.applies_anti_alias()) {
setAntiAlias(paint.isAntiAlias());
}
if (flags.applies_alpha_or_color()) {
setColor(paint.getColor());
}
if (flags.applies_blend()) {
setBlendMode(paint.getBlendMode());
}
if (flags.applies_style()) {
setDrawStyle(paint.getDrawStyle());
}
if (flags.is_stroked(paint.getDrawStyle())) {
setStrokeWidth(paint.getStrokeWidth());
setStrokeMiter(paint.getStrokeMiter());
setStrokeCap(paint.getStrokeCap());
setStrokeJoin(paint.getStrokeJoin());
}
if (flags.applies_shader()) {
setColorSource(paint.getColorSource().get());
}
if (flags.applies_color_filter()) {
setInvertColors(paint.isInvertColors());
setColorFilter(paint.getColorFilter().get());
}
if (flags.applies_image_filter()) {
setImageFilter(paint.getImageFilter().get());
}
if (flags.applies_mask_filter()) {
setMaskFilter(paint.getMaskFilter().get());
}
}
void DisplayListBuilder::checkForDeferredSave() {
if (current_info().has_deferred_save_op) {
size_t save_offset = used_;
Push<SaveOp>(0);
current_info().save_offset = save_offset;
current_info().save_depth = depth_;
current_info().has_deferred_save_op = false;
}
}
void DisplayListBuilder::Save() {
bool was_nop = current_info().is_nop;
save_stack_.emplace_back(¤t_info());
current_info().is_nop = was_nop;
FML_DCHECK(save_stack_.size() >= 2u);
FML_DCHECK(current_info().has_deferred_save_op);
}
void DisplayListBuilder::saveLayer(const SkRect& bounds,
const SaveLayerOptions in_options,
const DlImageFilter* backdrop) {
SaveLayerOptions options = in_options.without_optimizations();
DisplayListAttributeFlags flags = options.renders_with_attributes()
? kSaveLayerWithPaintFlags
: kSaveLayerFlags;
OpResult result = PaintResult(current_, flags);
if (result == OpResult::kNoEffect) {
// If we can't render, whether because we were already in a no-render
// state from the parent or because our own attributes make us a nop,
// we can just simplify this whole layer to a regular save that has
// nop state. We need to have a SaveInfo for the eventual restore(),
// but no rendering ops should be accepted between now and then so
// it doesn't need any of the data associated with a layer SaveInfo.
Save();
current_info().is_nop = true;
return;
}
if (backdrop != nullptr) {
current_layer().contains_backdrop_filter = true;
}
// Snapshot these values before we do any work as we need the values
// from before the method was called, but some of the operations below
// might update them.
size_t save_offset = used_;
uint32_t save_depth = depth_;
// A backdrop will affect up to the entire surface, bounded by the clip
bool will_be_unbounded = (backdrop != nullptr);
std::shared_ptr<const DlImageFilter> filter;
if (options.renders_with_attributes()) {
if (!paint_nops_on_transparency()) {
// We will fill the clip of the outer layer when we restore.
will_be_unbounded = true;
}
filter = current_.getImageFilter();
CheckLayerOpacityCompatibility(true);
UpdateLayerResult(result, true);
} else {
CheckLayerOpacityCompatibility(false);
UpdateLayerResult(result, false);
}
// The actual flood of the outer layer clip will occur after the
// (eventual) corresponding restore is called, but rather than
// remember this information in the LayerInfo until the restore
// method is processed, we just mark the unbounded state up front.
// Another reason to accumulate the clip here rather than in
// restore is so that this savelayer will be tagged in the rtree
// with its full bounds and the right op_index so that it doesn't
// get culled during rendering.
if (will_be_unbounded) {
// Accumulate should always return true here because if the
// clip was empty then that would have been caught up above
// when we tested the PaintResult.
[[maybe_unused]] bool unclipped = AccumulateUnbounded();
FML_DCHECK(unclipped);
}
// Accumulate information for the SaveInfo we are about to push onto the
// stack.
{
size_t rtree_index =
rtree_data_.has_value() ? rtree_data_->rects.size() : 0u;
save_stack_.emplace_back(¤t_info(), filter, rtree_index);
FML_DCHECK(current_info().is_save_layer);
FML_DCHECK(!current_info().is_nop);
FML_DCHECK(!current_info().has_deferred_save_op);
current_info().save_offset = save_offset;
current_info().save_depth = save_depth;
// If we inherit some culling bounds and we have a filter then we need
// to adjust them so that we cull for the correct input space for the
// output of the filter.
if (filter) {
SkRect outer_cull_rect = current_info().global_state.device_cull_rect();
SkMatrix matrix = current_info().global_state.matrix_3x3();
SkIRect output_bounds = outer_cull_rect.roundOut();
SkIRect input_bounds;
if (filter->get_input_device_bounds(output_bounds, matrix,
input_bounds)) {
current_info().global_state.resetDeviceCullRect(
SkRect::Make(input_bounds));
} else {
// Filter could not make any promises about the bounds it needs to
// fill the output space, so we use a maximal rect to accumulate
// the layer bounds.
current_info().global_state.resetDeviceCullRect(kMaxCullRect);
}
}
// We always want to cull based on user provided bounds, though, as
// that is legacy behavior even if it doesn't always work precisely
// in a rotated or skewed coordinate system (but it will work
// conservatively).
if (in_options.bounds_from_caller()) {
current_info().global_state.clipRect(bounds, ClipOp::kIntersect, false);
}
}
// Accumulate options to store in the SaveLayer op record.
{
SkRect record_bounds;
if (in_options.bounds_from_caller()) {
options = options.with_bounds_from_caller();
record_bounds = bounds;
} else {
FML_DCHECK(record_bounds.isEmpty());
}
if (backdrop) {
Push<SaveLayerBackdropOp>(0, options, record_bounds, backdrop);
} else {
Push<SaveLayerOp>(0, options, record_bounds);
}
}
if (options.renders_with_attributes()) {
// |current_opacity_compatibility_| does not take an ImageFilter into
// account because an individual primitive with an ImageFilter can apply
// opacity on top of it. But, if the layer is applying the ImageFilter
// then it cannot pass the opacity on.
if (!current_opacity_compatibility_ || filter) {
UpdateLayerOpacityCompatibility(false);
}
}
}
void DisplayListBuilder::SaveLayer(const SkRect* bounds,
const DlPaint* paint,
const DlImageFilter* backdrop) {
SaveLayerOptions options;
SkRect temp_bounds;
if (bounds) {
options = options.with_bounds_from_caller();
temp_bounds = *bounds;
} else {
temp_bounds.setEmpty();
}
if (paint != nullptr) {
options = options.with_renders_with_attributes();
SetAttributesFromPaint(*paint,
DisplayListOpFlags::kSaveLayerWithPaintFlags);
}
saveLayer(temp_bounds, options, backdrop);
}
void DisplayListBuilder::Restore() {
if (save_stack_.size() <= 1) {
return;
}
if (!current_info().has_deferred_save_op) {
SaveOpBase* op = reinterpret_cast<SaveOpBase*>(storage_.get() +
current_info().save_offset);
FML_CHECK(op->type == DisplayListOpType::kSave ||
op->type == DisplayListOpType::kSaveLayer ||
op->type == DisplayListOpType::kSaveLayerBackdrop);
op->restore_index = op_index_;
op->total_content_depth = depth_ - current_info().save_depth;
if (current_info().is_save_layer) {
RestoreLayer();
}
// Wait until all outgoing bounds information for the saveLayer is
// recorded before pushing the record to the buffer so that any rtree
// bounds will be attributed to the op_index of the restore op.
Push<RestoreOp>(0);
} else {
FML_DCHECK(!current_info().is_save_layer);
}
save_stack_.pop_back();
}
void DisplayListBuilder::RestoreLayer() {
FML_DCHECK(save_stack_.size() > 1);
FML_DCHECK(current_info().is_save_layer);
FML_DCHECK(!current_info().has_deferred_save_op);
// A saveLayer will usually do a final copy to the main buffer in
// addition to its content, but that is accounted for outside of
// the total content depth computed above in Restore.
depth_ += render_op_depth_cost_;
SkRect content_bounds = current_layer().layer_local_accumulator.bounds();
SaveLayerOpBase* layer_op = reinterpret_cast<SaveLayerOpBase*>(
storage_.get() + current_info().save_offset);
FML_CHECK(layer_op->type == DisplayListOpType::kSaveLayer ||
layer_op->type == DisplayListOpType::kSaveLayerBackdrop);
if (layer_op->options.bounds_from_caller()) {
if (!content_bounds.isEmpty() && !layer_op->rect.contains(content_bounds)) {
layer_op->options = layer_op->options.with_content_is_clipped();
content_bounds.intersect(layer_op->rect);
}
}
layer_op->rect = content_bounds;
layer_op->max_blend_mode = current_layer().max_blend_mode;
if (current_layer().contains_backdrop_filter) {
layer_op->options = layer_op->options.with_contains_backdrop_filter();
}
if (current_layer().is_group_opacity_compatible()) {
layer_op->options = layer_op->options.with_can_distribute_opacity();
}
// Ensure that the bounds transferred in the following call will be
// attributed to the index of the restore op.
FML_DCHECK(layer_op->restore_index == op_index_);
TransferLayerBounds(content_bounds);
}
// There are a few different conditions and corresponding operations to
// consider when transferring bounds from one layer to another. The current
// layer will have accumulated its bounds into 2 potential places:
//
// - Its own private layer local bounds, which were potentially clipped by
// the supplied bounds and passed here as the content_bounds.
//
// - Either the rtree rect list, or the global space accumulator, one or
// the other.
//
// If there is no filter then the private layer bounds are complete and
// they simply need to be passed along to the parent into its layer local
// accumulator. Also, if there was no filter then the existing bounds
// recorded in either the rtree rects or the layer's global space accumulator
// (shared with its parent) need no updating so no global space transfer
// has to occur.
//
// If there is a filter then the global content bounds will need to be
// adjusted in one of two ways (rtree vs non-rtree):
//
// - If we are accumulating rtree rects then each of the rects accumulated
// during this current layer will need to be updated by the filter in the
// global coordinate space in which they were accumulated. In this mode
// we should never have a global space accumulator on the layer.
//
// - Otherwise we were accumulating global bounds into our own private
// global space accumulator which need to be adjusted in the global space
// coordinate system by the filter.
//
// Finally, we will have to adjust the layer's content bounds by the filter
// and accumulate those into the parent layer's local bounds.
void DisplayListBuilder::TransferLayerBounds(const SkRect& content_bounds) {
auto& filter = current_layer().filter;
if (!filter) {
// We either accumulate global bounds into the rtree_data if there
// is one, or into the global_space_accumulator, but not both.
FML_DCHECK(!rtree_data_.has_value() ||
current_layer().global_space_accumulator.is_empty());
parent_info().AccumulateBoundsLocal(content_bounds);
parent_layer().global_space_accumulator.accumulate(
current_layer().global_space_accumulator);
return;
}
bool parent_is_flooded = false;
SkRect bounds_for_parent = content_bounds;
// First, let's adjust or transfer the global/rtree bounds by the filter.
// Matrix and Clip for the filter adjustment are the global values from
// just before our saveLayer and should still be the current values
// present in the parent layer.
const SkRect clip = parent_info().global_state.device_cull_rect();
const SkMatrix matrix = parent_info().global_state.matrix_3x3();
if (rtree_data_.has_value()) {
// Neither current or parent layer should have any global bounds in
// their accumulator
FML_DCHECK(current_layer().global_space_accumulator.is_empty());
FML_DCHECK(parent_layer().global_space_accumulator.is_empty());
// The rtree rects were accumulated without the bounds modification of
// the filter applied to the layer so they may fail to trigger on a
// culled dispatch if their filter "fringes" are in the dispatch scope
// but their base rendering bounds are not. (Also, they will not
// contribute fully when we compute the overall bounds of this DL.)
//
// To make sure they are rendered in the culled dispatch situation, we
// revisit all of the RTree rects accumulated during the current layer
// (indicated by rtree_rects_start_index) and expand them by the filter.
if (AdjustRTreeRects(rtree_data_.value(), *filter, matrix, clip,
current_layer().rtree_rects_start_index)) {
parent_is_flooded = true;
}
} else {
SkRect global_bounds = current_layer().global_space_accumulator.bounds();
if (!global_bounds.isEmpty()) {
SkIRect global_ibounds = global_bounds.roundOut();
if (!filter->map_device_bounds(global_ibounds, matrix, global_ibounds)) {
parent_is_flooded = true;
} else {
global_bounds.set(global_ibounds);
if (global_bounds.intersect(clip)) {
parent_layer().global_space_accumulator.accumulate(global_bounds);
}
}
}
}
// Now we visit the layer bounds which are in the layer's local coordinate
// system must be accumulated into the parent layer's bounds while
// adjusting them by the layer's local coordinate system (handled by the
// Accumulate() methods).
// A filter will happily adjust empty bounds to be non-empty, so we
// specifically avoid that case here. Also, if we are already planning
// to flood the parent due to any of the cases above, we don't need to
// run the filter on the content bounds only to discover the same
// condition.
if (!parent_is_flooded && !bounds_for_parent.isEmpty()) {
if (!filter->map_local_bounds(bounds_for_parent, bounds_for_parent)) {
parent_is_flooded = true;
}
}
if (parent_is_flooded) {
// All of the above computations deferred the flooded parent status
// to here. We need to mark the parent as flooded in both its layer
// and global accumulators. Note that even though the rtree rects
// were expanded to the size of the clip above, this method will still
// add one more rect to the rtree with the op index of the restore
// command to prevent the saveLayer itself from being elided in the
// rare case that there are no rendering ops in it, or somehow none
// of them were chosen by the rtree search (unlikely). The saveLayer
// must be processed for the parent flood to happen.
AccumulateUnbounded(parent_info());
} else {
parent_info().AccumulateBoundsLocal(bounds_for_parent);
}
}
bool DisplayListBuilder::AdjustRTreeRects(RTreeData& data,
const DlImageFilter& filter,
const SkMatrix& matrix,
const SkRect& clip,
size_t rect_start_index) {
auto& rects = data.rects;
auto& indices = data.indices;
FML_DCHECK(rects.size() == indices.size());
int ret = false;
auto rect_keep = rect_start_index;
for (size_t i = rect_start_index; i < rects.size(); i++) {
SkRect bounds = rects[i];
SkIRect ibounds;
if (filter.map_device_bounds(bounds.roundOut(), matrix, ibounds)) {
bounds.set(ibounds);
} else {
bounds = clip;
ret = true;
}
if (bounds.intersect(clip)) {
indices[rect_keep] = indices[i];
rects[rect_keep] = bounds;
rect_keep++;
}
}
indices.resize(rect_keep);
rects.resize(rect_keep);
return ret;
}
void DisplayListBuilder::RestoreToCount(int restore_count) {
FML_DCHECK(restore_count <= GetSaveCount());
while (restore_count < GetSaveCount() && GetSaveCount() > 1) {
restore();
}
}
void DisplayListBuilder::Translate(SkScalar tx, SkScalar ty) {
if (std::isfinite(tx) && std::isfinite(ty) && (tx != 0.0 || ty != 0.0)) {
checkForDeferredSave();
Push<TranslateOp>(0, tx, ty);
global_state().translate(tx, ty);
layer_local_state().translate(tx, ty);
}
}
void DisplayListBuilder::Scale(SkScalar sx, SkScalar sy) {
if (std::isfinite(sx) && std::isfinite(sy) && (sx != 1.0 || sy != 1.0)) {
checkForDeferredSave();
Push<ScaleOp>(0, sx, sy);
global_state().scale(sx, sy);
layer_local_state().scale(sx, sy);
}
}
void DisplayListBuilder::Rotate(SkScalar degrees) {
if (SkScalarMod(degrees, 360.0) != 0.0) {
checkForDeferredSave();
Push<RotateOp>(0, degrees);
global_state().rotate(degrees);
layer_local_state().rotate(degrees);
}
}
void DisplayListBuilder::Skew(SkScalar sx, SkScalar sy) {
if (std::isfinite(sx) && std::isfinite(sy) && (sx != 0.0 || sy != 0.0)) {
checkForDeferredSave();
Push<SkewOp>(0, sx, sy);
global_state().skew(sx, sy);
layer_local_state().skew(sx, sy);
}
}
// clang-format off
// 2x3 2D affine subset of a 4x4 transform in row major order
void DisplayListBuilder::Transform2DAffine(
SkScalar mxx, SkScalar mxy, SkScalar mxt,
SkScalar myx, SkScalar myy, SkScalar myt) {
if (std::isfinite(mxx) && std::isfinite(myx) &&
std::isfinite(mxy) && std::isfinite(myy) &&
std::isfinite(mxt) && std::isfinite(myt)) {
if (mxx == 1 && mxy == 0 &&
myx == 0 && myy == 1) {
Translate(mxt, myt);
} else {
checkForDeferredSave();
Push<Transform2DAffineOp>(0,
mxx, mxy, mxt,
myx, myy, myt);
global_state().transform2DAffine(mxx, mxy, mxt,
myx, myy, myt);
layer_local_state().transform2DAffine(mxx, mxy, mxt,
myx, myy, myt);
}
}
}
// full 4x4 transform in row major order
void DisplayListBuilder::TransformFullPerspective(
SkScalar mxx, SkScalar mxy, SkScalar mxz, SkScalar mxt,
SkScalar myx, SkScalar myy, SkScalar myz, SkScalar myt,
SkScalar mzx, SkScalar mzy, SkScalar mzz, SkScalar mzt,
SkScalar mwx, SkScalar mwy, SkScalar mwz, SkScalar mwt) {
if ( mxz == 0 &&
myz == 0 &&
mzx == 0 && mzy == 0 && mzz == 1 && mzt == 0 &&
mwx == 0 && mwy == 0 && mwz == 0 && mwt == 1) {
Transform2DAffine(mxx, mxy, mxt,
myx, myy, myt);
} else if (std::isfinite(mxx) && std::isfinite(mxy) &&
std::isfinite(mxz) && std::isfinite(mxt) &&
std::isfinite(myx) && std::isfinite(myy) &&
std::isfinite(myz) && std::isfinite(myt) &&
std::isfinite(mzx) && std::isfinite(mzy) &&
std::isfinite(mzz) && std::isfinite(mzt) &&
std::isfinite(mwx) && std::isfinite(mwy) &&
std::isfinite(mwz) && std::isfinite(mwt)) {
checkForDeferredSave();
Push<TransformFullPerspectiveOp>(0,
mxx, mxy, mxz, mxt,
myx, myy, myz, myt,
mzx, mzy, mzz, mzt,
mwx, mwy, mwz, mwt);
global_state().transformFullPerspective(mxx, mxy, mxz, mxt,
myx, myy, myz, myt,
mzx, mzy, mzz, mzt,
mwx, mwy, mwz, mwt);
layer_local_state().transformFullPerspective(mxx, mxy, mxz, mxt,
myx, myy, myz, myt,
mzx, mzy, mzz, mzt,
mwx, mwy, mwz, mwt);
}
}
// clang-format on
void DisplayListBuilder::TransformReset() {
checkForDeferredSave();
Push<TransformResetOp>(0);
// The matrices in layer_tracker_ and tracker_ are similar, but
// start at a different base transform. The tracker_ potentially
// has some number of transform operations on it that prefix the
// operations accumulated in layer_tracker_. So we can't set them both
// to identity in parallel as they would no longer maintain their
// relationship to each other.
// Instead we reinterpret this operation as transforming by the
// inverse of the current transform. Doing so to tracker_ sets it
// to identity so we can avoid the math there, but we must do the
// math the long way for layer_tracker_. This becomes:
// layer_tracker_.transform(tracker_.inverse());
if (!layer_local_state().inverseTransform(global_state())) {
// If the inverse operation failed then that means that either
// the matrix above the current layer was singular, or the matrix
// became singular while we were accumulating the current layer.
// In either case, we should no longer be accumulating any
// contents so we set the layer tracking transform to a singular one.
layer_local_state().setTransform(SkMatrix::Scale(0.0f, 0.0f));
}
global_state().setIdentity();
}
void DisplayListBuilder::Transform(const SkMatrix* matrix) {
if (matrix != nullptr) {
Transform(SkM44(*matrix));
}
}
void DisplayListBuilder::Transform(const SkM44* m44) {
if (m44 != nullptr) {
transformFullPerspective(
m44->rc(0, 0), m44->rc(0, 1), m44->rc(0, 2), m44->rc(0, 3),
m44->rc(1, 0), m44->rc(1, 1), m44->rc(1, 2), m44->rc(1, 3),
m44->rc(2, 0), m44->rc(2, 1), m44->rc(2, 2), m44->rc(2, 3),
m44->rc(3, 0), m44->rc(3, 1), m44->rc(3, 2), m44->rc(3, 3));
}
}
void DisplayListBuilder::ClipRect(const SkRect& rect,
ClipOp clip_op,
bool is_aa) {
if (!rect.isFinite()) {
return;
}
if (current_info().is_nop) {
return;
}
if (current_info().has_valid_clip &&
clip_op == DlCanvas::ClipOp::kIntersect &&
layer_local_state().rect_covers_cull(rect)) {
return;
}
global_state().clipRect(rect, clip_op, is_aa);
layer_local_state().clipRect(rect, clip_op, is_aa);
if (global_state().is_cull_rect_empty() ||
layer_local_state().is_cull_rect_empty()) {
current_info().is_nop = true;
return;
}
current_info().has_valid_clip = true;
checkForDeferredSave();
switch (clip_op) {
case ClipOp::kIntersect:
Push<ClipIntersectRectOp>(0, rect, is_aa);
break;
case ClipOp::kDifference:
Push<ClipDifferenceRectOp>(0, rect, is_aa);
break;
}
}
void DisplayListBuilder::ClipOval(const SkRect& bounds,
ClipOp clip_op,
bool is_aa) {
if (!bounds.isFinite()) {
return;
}
if (current_info().is_nop) {
return;
}
if (current_info().has_valid_clip &&
clip_op == DlCanvas::ClipOp::kIntersect &&
layer_local_state().oval_covers_cull(bounds)) {
return;
}
global_state().clipOval(bounds, clip_op, is_aa);
layer_local_state().clipOval(bounds, clip_op, is_aa);
if (global_state().is_cull_rect_empty() ||
layer_local_state().is_cull_rect_empty()) {
current_info().is_nop = true;
return;
}
current_info().has_valid_clip = true;
checkForDeferredSave();
switch (clip_op) {
case ClipOp::kIntersect:
Push<ClipIntersectOvalOp>(0, bounds, is_aa);
break;
case ClipOp::kDifference:
Push<ClipDifferenceOvalOp>(0, bounds, is_aa);
break;
}
}
void DisplayListBuilder::ClipRRect(const SkRRect& rrect,
ClipOp clip_op,
bool is_aa) {