Skip to content

a2d8a4v/ppgs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

High-Fidelity Neural Phonetic Posteriorgrams

PyPI License Downloads

Training, evaluation, and inference of neural phonetic posteriorgrams (PPGs) in PyTorch

[Paper] [Website]

Table of contents

Installation

An inference-only installation with our best model is pip-installable

pip install ppgs

To perform training, install training dependencies and FFMPEG.

pip install ppgs[train]
conda install -c conda-forge 'ffmpeg<5'

If you wish to use the Charsiu representation, download the code, install both inference and training dependencies, and install Charsiu as a Git submodule.

# Clone
git clone [email protected]/interactiveaudiolab/ppgs
cd ppgs/

# Install dependencies
pip install -e .[train]
conda install -c conda-forge 'ffmpeg<5'

# Download Charsiu
git submodule init
git submodule update

Inference

import ppgs

# Load speech audio at correct sample rate
audio = ppgs.load.audio(audio_file)

# Choose a gpu index to use for inference. Set to None to use cpu.
gpu = 0

# Infer PPGs
ppgs = ppgs.from_audio(audio, ppgs.SAMPLE_RATE, gpu=gpu)

Application programming interface (API)

ppgs.from_audio

def from_audio(
    audio: torch.Tensor,
    sample_rate: Union[int, float],
    checkpoint: Optional[Union[str, bytes, os.PathLike]] = None,
    gpu: int = None
) -> torch.Tensor:
    """Infer ppgs from audio

    Arguments
        audio
            Batched audio to process
            shape=(batch, 1, samples)
        sample_rate
            Audio sampling rate
        checkpoint
            The checkpoint file
        gpu
            The index of the GPU to use for inference

    Returns
        ppgs
            Phonetic posteriorgrams
            shape=(batch, len(ppgs.PHONEMES), frames)
    """

ppgs.from_file

def from_file(
    file: Union[str, bytes, os.PathLike],
    checkpoint: Optional[Union[str, bytes, os.PathLike]] = None,
    gpu: Optional[int] = None
) -> torch.Tensor:
    """Infer ppgs from an audio file

    Arguments
        file
            The audio file
        checkpoint
            The checkpoint file
        gpu
            The index of the GPU to use for inference

    Returns
        ppgs
            Phonetic posteriorgram
            shape=(len(ppgs.PHONEMES), frames)

ppgs.from_file_to_file

def from_file_to_file(
    audio_file: Union[str, bytes, os.PathLike],
    output_file: Union[str, bytes, os.PathLike],
    checkpoint: Optional[Union[str, bytes, os.PathLike]] = None,
    gpu: Optional[int] = None
) -> None:
    """Infer ppg from an audio file and save to a torch tensor file

    Arguments
        audio_file
            The audio file
        output_file
            The .pt file to save PPGs
        checkpoint
            The checkpoint file
        gpu
            The index of the GPU to use for inference
    """

ppgs.from_files_to_files

def from_files_to_files(
    audio_files: List[Union[str, bytes, os.PathLike]],
    output_files: List[Union[str, bytes, os.PathLike]],
    checkpoint: Optional[Union[str, bytes, os.PathLike]] = None,
    num_workers: int = ppgs.NUM_WORKERS,
    gpu: Optional[int] = None,
    max_frames: int = ppgs.MAX_INFERENCE_FRAMES
) -> None:
    """Infer ppgs from audio files and save to torch tensor files

    Arguments
        audio_files
            The audio files
        output_files
            The .pt files to save PPGs
        checkpoint
            The checkpoint file
        num_workers
            Number of CPU threads for multiprocessing
        gpu
            The index of the GPU to use for inference
        max_frames
            The maximum number of frames on the GPU at once
    """

ppgs.from_paths_to_paths

def from_paths_to_paths(
    input_paths: List[Union[str, bytes, os.PathLike]],
    output_paths: Optional[List[Union[str, bytes, os.PathLike]]] = None,
    extensions: Optional[List[str]] = None,
    checkpoint: Optional[Union[str, bytes, os.PathLike]] = None,
    num_workers: int = ppgs.NUM_WORKERS,
    gpu: Optional[int] = None,
    max_frames: int = ppgs.MAX_INFERENCE_FRAMES
) -> None:
    """Infer ppgs from audio files and save to torch tensor files

    Arguments
        input_paths
            Paths to audio files and/or directories
        output_paths
            The one-to-one corresponding outputs
        extensions
            Extensions to glob for in directories
        checkpoint
            The checkpoint file
        num_workers
            Number of CPU threads for multiprocessing
        gpu
            The index of the GPU to use for inference
        max_frames
            The maximum number of frames on the GPU at once
    """

Command-line interface (CLI)

usage: python -m ppgs
    [-h]
    [--input_paths INPUT_PATHS [INPUT_PATHS ...]]
    [--output_paths OUTPUT_PATHS [OUTPUT_PATHS ...]]
    [--extensions EXTENSIONS [EXTENSIONS ...]]
    [--checkpoint CHECKPOINT]
    [--num-workers NUM_WORKERS]
    [--gpu GPU]
    [--max-frames MAX_TRAINING_FRAMES]

arguments:
    --input_paths INPUT_PATHS [INPUT_PATHS ...]
        Paths to audio files and/or directories

optional arguments:
    -h, --help
        Show this help message and exit
    --output_paths OUTPUT_PATHS [OUTPUT_PATHS ...]
        The one-to-one corresponding output paths
    --extensions EXTENSIONS [EXTENSIONS ...]
        Extensions to glob for in directories
    --checkpoint CHECKPOINT
        The checkpoint file
    --num-workers NUM_WORKERS
        Number of CPU threads for multiprocessing
    --gpu GPU
        The index of the GPU to use for inference. Defaults to CPU.

Distance

To compute the proposed normalized Jenson-Shannon divergence pronunciation distance between two PPGs, use ppgs.distance().

def distance(
    ppgX: torch.Tensor,
    ppgY: torch.Tensor,
    reduction: str = 'mean',
    normalize: bool = True
) -> torch.Tensor:
    """Compute the pronunciation distance between two aligned PPGs

    Arguments
        ppgX
            Input PPG X
            shape=(len(ppgs.PHONEMES), frames)
        ppgY
            Input PPG Y to compare with PPG X
            shape=(len(ppgs.PHONEMES), frames)
        reduction
            Reduction to apply to the output. One of ['mean', 'none', 'sum'].
        normalize
            Apply similarity based normalization

    Returns
        Normalized Jenson-shannon divergence between PPGs
    """

Interpolate

def interpolate(
    ppgX: torch.Tensor,
    ppgY: torch.Tensor,
    interp: Union[float, torch.Tensor]
) -> torch.Tensor:
    """Spherical linear interpolation

    Arguments
        ppgX
            Input PPG X
            shape=(len(ppgs.PHONEMES), frames)
        ppgY
            Input PPG Y
            shape=(len(ppgs.PHONEMES), frames)
        interp
            Interpolation values
            scalar float OR shape=(frames,)

    Returns
        Interpolated PPGs
        shape=(len(ppgs.PHONEMES), frames)
    """

Edit

import ppgs

# Get PPGs to edit
ppg = ppgs.from_file(audio_file, gpu=gpu)

# Constant-ratio time-stretching (slowing down)
grid = ppgs.edit.grid.constant(ppg, ratio=0.8)
slow = ppgs.edit.grid.sample(ppg, grid)

# Stretch to a desired length (e.g., 100 frames)
grid = ppgs.edit.grid.of_length(ppg, 100)
fixed = ppgs.edit.grid.sample(ppg, grid)

ppgs.edit.grid.constant

def constant(ppg: torch.Tensor, ratio: float) -> torch.Tensor:
    """Create a grid for constant-ratio time-stretching

    Arguments
        ppg
            Input PPG
        ratio
            Time-stretching ratio; lower is slower

    Returns
        Constant-ratio grid for time-stretching ppg
    """

ppgs.edit.grid.from_alignments

def from_alignments(
    source: pypar.Alignment,
    target: pypar.Alignment,
    sample_rate: int = ppgs.SAMPLE_RATE,
    hopsize: int = ppgs.HOPSIZE
) -> torch.Tensor:
    """Create time-stretch grid to convert source alignment to target

    Arguments
        source
            Forced alignment of PPG to stretch
        target
            Forced alignment of target PPG
        sample_rate
            Audio sampling rate
        hopsize
            Hopsize in samples

    Returns
        Grid for time-stretching source PPG
    """

ppgs.edit.grid.of_length

def of_length(ppg: torch.Tensor, length: int) -> torch.Tensor:
    """Create time-stretch grid to resample PPG to a specified length

    Arguments
        ppg
            Input PPG
        length
            Target length

    Returns
        Grid of specified length for time-stretching ppg
    """

ppgs.edit.grid.sample

def grid_sample(ppg: torch.Tensor, grid: torch.Tensor) -> torch.Tensor:
    """Grid-based PPG interpolation

    Arguments
        ppg
            Input PPG
        grid
            Grid of desired length; each item is a float-valued index into ppg

    Returns
        Interpolated PPG
    """

ppgs.edit.reallocate

def reallocate(
    ppg: torch.Tensor,
    source: str,
    target: str,
    value: Optional[float] = None
) -> torch.Tensor:
    """Reallocate probability from source phoneme to target phoneme

    Arguments
        ppg
            Input PPG
            shape=(len(ppgs.PHONEMES), frames)
        source
            Source phoneme
        target
            Target phoneme
        value
            Max amount to reallocate. If None, reallocates all probability.

    Returns
        Edited PPG
    """

ppgs.edit.regex

def regex(
    ppg: torch.Tensor,
    source_phonemes: List[str],
    target_phonemes: List[str]
) -> torch.Tensor:
    """Regex match and replace (via swap) for phoneme sequences

    Arguments
        ppg
            Input PPG
            shape=(len(ppgs.PHONEMES), frames)
        source_phonemes
            Source phoneme sequence
        target_phonemes
            Target phoneme sequence

    Returns
        Edited PPG
    """

ppgs.edit.shift

def shift(ppg: torch.Tensor, phoneme: str, value: float):
    """Shift probability of a phoneme and reallocate proportionally

    Arguments
        ppg
            Input PPG
            shape=(len(ppgs.PHONEMES), frames)
        phoneme
            Input phoneme
        value
            Maximal shift amount

    Returns
        Edited PPG
    """

ppgs.edit.swap

def swap(ppg: torch.Tensor, phonemeA: str, phonemeB: str) -> torch.Tensor:
    """Swap the probabilities of two phonemes

    Arguments
        ppg
            Input PPG
            shape=(len(ppg.PHONEMES), frames)
        phonemeA
            Input phoneme A
        phonemeB
            Input phoneme B

    Returns
        Edited PPG
    """

Training

Download

Downloads, unzips, and formats datasets. Stores datasets in data/datasets/. Stores formatted datasets in data/cache/.

N.B. Common voice and TIMIT cannot be automatically downloaded. You must manually download the tarballs and place them in data/sources/commonvoice or data/sources/timit, respectively, prior to running the following.

python -m ppgs.data.download --datasets <datasets>

Preprocess

Prepares representations for training. Representations are stored in data/cache/.

python -m ppgs.data.preprocess \
   --datasets <datasets> \
   --representatations <representations> \
   --gpu <gpu> \
   --num-workers <workers>

Partition

Partitions a dataset. You should not need to run this, as the partitions used in our work are provided for each dataset in ppgs/assets/partitions/.

python -m ppgs.partition --datasets <datasets>

Train

Trains a model. Checkpoints and logs are stored in runs/. You may want to run accelerate config first to configure which devices are used for training.

CUDA_VISIBLE_DEVICES=<gpus> accelerate launch -m ppgs.train \
    --config <config> \
    --dataset <dataset>

If the config file has been previously run, the most recent checkpoint will automatically be loaded and training will resume from that checkpoint.

Monitor

You can monitor training via tensorboard.

tensorboard --logdir runs/ --port <port> --load_fast true

To use the torchutil notification system to receive notifications for long jobs (download, preprocess, train, and evaluate), set the PYTORCH_NOTIFICATION_URL environment variable to a supported webhook as explained in the Apprise documentation.

Evaluate

Performs objective evaluation of phoneme accuracy. Results are stored in eval/.

python -m ppgs.evaluate \
    --config <name> \
    --datasets <datasets> \
    --checkpoint <checkpoint> \
    --gpus <gpus>

Citation

IEEE

C. Churchwell, M. Morrison, and B. Pardo, "High-Fidelity Neural Phonetic Posteriorgrams," Submitted to ICASSP 2024, April 2024.

BibTex

@inproceedings{churchwell2024high,
    title={High-Fidelity Neural Phonetic Posteriorgrams},
    author={Churchwell, Cameron and Morrison, Max and Pardo, Bryan},
    booktitle={Submitted to ICASSP 2024},
    month={April},
    year={2024}
}

About

High-Fidelity Neural Phonetic Posteriorgrams

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.3%
  • Shell 0.7%