-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·23 lines (18 loc) · 941 Bytes
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
from model import *
from data import *
#os.environ["CUDA_VISIBLE_DEVICES"] = "0"
data_gen_args = dict(rotation_range=0.2,
width_shift_range=0.05,
height_shift_range=0.05,
shear_range=0.05,
zoom_range=0.05,
horizontal_flip=True,
fill_mode='nearest')
myGene = trainGenerator(2,'data/PCA_Seg/train','image','org_label',data_gen_args,save_to_dir = None)
valGene = valGenerator(2,'data/membrane/val','image','label',data_gen_args,save_to_dir = None)
model = unet()
model_checkpoint = ModelCheckpoint('unet_pca_seg.hdf5', monitor='loss',verbose=1, save_best_only=True)
model.fit_generator(myGene,steps_per_epoch=30,epochs=1,callbacks=[model_checkpoint], validation_data=valGene)
testGene = testGenerator("data/PCA_Seg/test")
results = model.predict_generator(testGene, 3, verbose=1)
saveResult("data/PCA_Seg/test",results)