Skip to content

TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

Notifications You must be signed in to change notification settings

a70/simulated-unsupervised-tensorflow

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Simulated+Unsupervised (S+U) learning in TensorFlow

TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial Training.

model

Requirements

Usage

To generate synthetic dataset:

  1. Run UnityEyes with changing resolution to 640x480 and Camera parameters to [0, 0, 20, 40].
  2. ...

The data directory should looks like:

data
├── gaze
│   ├── MPIIGaze
│   │   └── Data
│   │       └── Normalized
│   │           ├── p00
│   │           ├── p01
│   │           └── ...
│   └── UnityEyes # contains images of UnityEyes
│       ├── 1.jpg
│       ├── 2.jpg
│       └── ...
├── __init__.py
├── gaze_data.py
├── hand_data.py
└── utils.py

To train a model:

$ python main.py --data_set gaze
$ python main.py --data_set hand

To test with an existing model:

$ python main.py --data_set gaze --test
$ python main.py --data_set hand --test

Results

(in progress)

model

Author

Taehoon Kim / @carpedm20

About

TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%