forked from yunjey/pytorch-tutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path4_training_image_classifier.py
147 lines (116 loc) · 4.59 KB
/
4_training_image_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch
import torchvision as tv
import torchvision.transforms as transforms
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = tv.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=0)
testset = tv.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=0)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
import matplotlib.pyplot as plt
import numpy as np
def imshow(img):
img = img / 2 + 0.5 # unnormalize (-1 ~ 1 => 0 ~ 1)
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0))) # CHW -> HWC
plt.show()
dataiter = iter(trainloader)
images, labels = dataiter.next()
print(images)
imshow(tv.utils.make_grid(images))
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
## Define Covolution Neural Network
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
#x = F.softmax(self.fc3(x), dim=1) # range => 0 ~ 1
x = self.fc3(x) # range => -infinite ~ infinite
return x
net = Net()
## Define loss function and optimizer
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
## Train
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net.forward(inputs)
loss = criterion(outputs, labels)
loss.backward() # loss에 대해 gradient 계산
optimizer.step() # gradient update
running_loss += loss.item()
if (i + 1) % 2000 == 0:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print(outputs)
print('Finished Training')
PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH) # save parameters only
# torch.save(net, PATH) will save entire model
## Test
dataiter = iter(testloader)
images, labels = dataiter.next()
imshow(tv.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
net = Net()
net.load_state_dict(torch.load(PATH))
outputs = net.forward(images)
_, predicted = torch.max(outputs, 1) # returns value list, index of max value list
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]
for j in range(4)))
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net.forward(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net.forward(images)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze() # [True False True False]
for i in range(4):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
for i in range(10):
print('Accuracy of %5s : %2d %%' % (
classes[i], 100 * class_correct[i] / class_total[i]))
## Train using GPU
#device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#print(device)
#net.to(device)
# input과 label도 GPU로 보내야한다.
#input, labels = data[0].to(device), data[1].to(device)