-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathvarImplZ.v
143 lines (121 loc) · 3.8 KB
/
varImplZ.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
Require Import UsefulTypes.
Require Import Coq.Arith.Arith Coq.NArith.BinNat Coq.Strings.String Coq.Lists.List Coq.omega.Omega
Coq.Program.Program Coq.micromega.Psatz.
Global Instance deqpos : Deq positive.
Proof.
unfold Deq.
intros ? ?.
exists (Pos.eqb a b).
split.
- intros. apply Peqb_true_eq. assumption.
- intros. subst. apply Pos.eqb_refl.
Defined.
Require Import varInterface.
Global Instance varClassP : VarClass positive bool :=
fun p =>
match p with
| xO _ => true (* p is even *)
| _ => false
end.
Require Import list.
Section Temp.
Local Notation seq := (seq Pos.succ).
Lemma in_seq len start n :
In n (seq start len) <-> ((Pos.to_nat start) <= Pos.to_nat n < (Pos.to_nat start) +len).
Proof.
revert start. induction len; simpl; intros.
- rewrite <- plus_n_O. split;[easy|].
intros (H,H'). apply (Lt.lt_irrefl _ (Lt.le_lt_trans _ _ _ H H')).
- rewrite IHlen, <- plus_n_Sm; simpl; split.
* intros [H|H]; subst. intuition auto with arith.
rewrite Pos2Nat.inj_succ in H.
omega.
* intros (H,H'). destruct (Lt.le_lt_or_eq _ _ H);
rewrite Pos2Nat.inj_succ in *; intuition.
apply Pos2Nat.inj_iff in H0. auto.
Qed.
Lemma in_seql len start n :
In n (seq start len) -> (start <= n)%positive.
Proof using.
intros Hin.
apply in_seq in Hin. apply proj1 in Hin.
lia.
Qed.
Lemma seq_NoDup len start : NoDup (seq start len).
Proof.
revert start; induction len; simpl; constructor; trivial.
rewrite in_seq. intros (H,_).
rewrite Pos2Nat.inj_succ in *.
apply (Lt.lt_irrefl _ H).
Qed.
Lemma seq_maxlp : forall a v avoid n,
LIn a (seq (maxlp avoid 1) n)
-> LIn v avoid
-> (v <= a)%positive.
Proof using.
intros ? ? ? ? Hin1 Hina.
apply in_seql in Hin1.
pose proof (maxlp_le v avoid xH (or_intror Hina)).
lia.
Qed.
(*
Lemma in_seqN len start n :
In n (seq start len) <-> (N.pos start <= N.pos n < N.pos start + N.of_nat len)%N.
Proof.
revert start. induction len; simpl; intros.
- split;[easy|].
intros (H,H'). omega. apply (Lt.lt_irrefl _ (Lt.le_lt_trans _ _ _ H H')).
- rewrite IHlen, <- plus_n_Sm; simpl; split.
* intros [H|H]; subst. intuition auto with arith.
rewrite Pos2Nat.inj_succ in H.
omega.
* intros (H,H'). destruct (Lt.le_lt_or_eq _ _ H);
rewrite Pos2Nat.inj_succ in *; intuition.
apply Pos2Nat.inj_iff in H0. auto.
Qed.
*)
Definition freshVarsPosAux (n:nat)
(c : bool) (avoid original : list positive) : list positive :=
let maxn := maxlp avoid xH in
let f := (if c then xO else xI) in
List.map f (seq (maxn) n).
End Temp.
Global Instance freshVarsPos : FreshVars positive bool:=
fun (n:nat)
(c : option bool) (avoid original : list positive)
=>
let c : bool :=
match c with
|Some c => c
|None => true
end in
freshVarsPosAux n c avoid original.
Require Import tactics.
Lemma freshVarsPosCorrect:
forall (n : nat) (oc : option bool) (avoid original : list positive),
let lf := freshVarsPos n oc avoid original in
(NoDup lf /\ list.disjoint lf avoid /\ Datatypes.length lf = n) /\
(forall c : bool, oc = Some c -> forall v : positive, In v lf -> varClassP v = c).
Proof.
intros.
split;[split;[|split]|]; subst lf; simpl; unfold freshVarsPos,freshVarsPosAux.
- apply NoDupInjectiveMap;[|apply seq_NoDup].
destruct oc; [destruct b|]; unfold injective_fun; intros;
cpx; inversion H; auto.
- intros ? Hin Hinc.
apply in_map_iff in Hin. exrepnd.
pose proof (seq_maxlp _ t avoid _ Hin1 Hinc) as Hin.
subst. destruct oc as [c | ]; try lia.
destruct c; lia.
- rewrite map_length. rewrite seq_length. refl.
- intros ? ?. subst. intros ? Hin. simpl.
apply in_map_iff in Hin.
exrepnd.
subst.
unfold varClassP.
destruct c; refl.
Qed.
Global Instance vartypePos : VarType positive bool.
apply Build_VarType.
exact freshVarsPosCorrect.
Defined.