forked from junsupan/TensorPCA
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsimulation.py
44 lines (32 loc) · 948 Bytes
/
simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
MC simulation for selecting the number of factors
When R=1, we expect the rejection probability to be 0.05;
when R=2, we expect the rejection probability to be 1.
"""
import numpy as np
from TensorPCA.tensorpca import TensorPCA
from TensorPCA.dgp import DGP
from TensorPCA.hyptest import dist
R = 2 # rank
# tensor size TxNxJ
T = 40
N = 30
J = 20
# approximates distribution
TW_dist = dist(1, 3)
ps = np.empty((5000,3))
for i in range(5000):
if (i+1) % 100 == 0:
print(str(i+1)) # displaying progress
# Generate a random tensor factor model and store the tensor
Y, _, _ = DGP((T,N,J),R)
# input the tensor into TensorPCA class
Z = TensorPCA(Y)
# rank test
_, p = Z.ranktest(TW_dist)
ps[i,:] = p
# rejection probability in each dimension
a=np.sum(ps<0.05,0)/5000
print('Empirical rejection probability in each dimension: '+str(a))