forked from keon/algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sudoku_solver.py
110 lines (92 loc) · 3.63 KB
/
sudoku_solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
"""
It's similar to how human solve Sudoku.
create a hash table (dictionary) val to store possible values in every location.
Each time, start from the location with fewest possible values, choose one value
from it and then update the board and possible values at other locations.
If this update is valid, keep solving (DFS). If this update is invalid (leaving
zero possible values at some locations) or this value doesn't lead to the
solution, undo the updates and then choose the next value.
Since we calculated val at the beginning and start filling the board from the
location with fewest possible values, the amount of calculation and thus the
runtime can be significantly reduced:
The run time is 48-68 ms on LeetCode OJ, which seems to be among the fastest
python solutions here.
The PossibleVals function may be further simplified/optimized, but it works just
fine for now. (it would look less lengthy if we are allowed to use numpy array
for the board lol).
"""
import unittest
class Sudoku:
def __init__ (self, board, row, col):
self.board = board
self.row = row
self.col = col
self.val = self.possible_values()
def possible_values(self):
a = "123456789"
d, val = {}, {}
for i in range(self.row):
for j in range(self.col):
ele = self.board[i][j]
if ele != ".":
d[("r", i)] = d.get(("r", i), []) + [ele]
d[("c", j)] = d.get(("c", j), []) + [ele]
d[(i//3, j//3)] = d.get((i//3, j//3), []) + [ele]
else:
val[(i,j)] = []
for (i,j) in val.keys():
inval = d.get(("r",i),[])+d.get(("c",j),[])+d.get((i/3,j/3),[])
val[(i,j)] = [n for n in a if n not in inval ]
return val
def solve(self):
if len(self.val)==0:
return True
kee = min(self.val.keys(), key=lambda x: len(self.val[x]))
nums = self.val[kee]
for n in nums:
update = {kee:self.val[kee]}
if self.valid_one(n, kee, update): # valid choice
if self.solve(): # keep solving
return True
self.undo(kee, update) # invalid choice or didn't solve it => undo
return False
def valid_one(self, n, kee, update):
self.board[kee[0]][kee[1]] = n
del self.val[kee]
i, j = kee
for ind in self.val.keys():
if n in self.val[ind]:
if ind[0]==i or ind[1]==j or (ind[0]/3,ind[1]/3)==(i/3,j/3):
update[ind] = n
self.val[ind].remove(n)
if len(self.val[ind])==0:
return False
return True
def undo(self, kee, update):
self.board[kee[0]][kee[1]]="."
for k in update:
if k not in self.val:
self.val[k]= update[k]
else:
self.val[k].append(update[k])
return None
def __str__(self):
"""[summary]
Generates a board representation as string.
Returns:
[str] -- [board representation]
"""
resp = ""
for i in range(self.row):
for j in range(self.col):
resp += " {0} ".format(self.board[i][j])
resp += "\n"
return resp
class TestSudoku(unittest.TestCase):
def test_sudoku_solver(self):
board = [["5","3","."], ["6",".", "."],[".","9","8"]]
test_obj = Sudoku(board, 3, 3)
test_obj.solve()
self.assertEqual([['5', '3', '1'], ['6', '1', '2'], ['1', '9', '8']],test_obj.board)
if __name__ == "__main__":
unittest.main()