-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPart 4 - Definite iteration.py
389 lines (308 loc) · 11.1 KB
/
Part 4 - Definite iteration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
# Definite iteration
# Indefinite Iteration - 'while' loop
my_list = [3, 2, 4, 5, 2]
index = 0
while index < len(my_list):
print(my_list[index])
index += 1
# Definite Iteration - 'for' loop
my_list = [3, 2, 4, 5, 2]
for item in my_list:
print(item)
# Sample structure of a for loop
# for <variable> in <collection>:
# <block>
# Example 1
name = input("Please type in your name: ")
for character in name:
print(character)
# The function range
# Example 1 - range function
for i in range(5):
print(i)
# Example 2 - range function
for i in range(3, 7):
print(i)
# Example 3 - range function
for i in range(1, 9, 2):
print(i)
# Example 4 - range function
for i in range(6, 2, -1):
print(i)
# From a range to a list
numbers = range(2, 7)
print(numbers) # outputs only the description of a range object
numbers = list(range(2, 7))
print(numbers) # 'list' function will convert a range into a list. The list will contain all the values that are in the range.
# Finding the best or the worst item in a list - Sample code structure
# best = initial_value # The initial value depends on the situation
# for item in my_list:
# if item is better than best:
# best = item
# We now have the best one figured out!
# Star-studded
string = input("Please type in a string: ")
for letter in string:
print(letter)
print("*")
# From negative to positive
number = int(input("Please type in a positive integer: "))
for i in range(-number, number + 1):
if i == 0:
continue
print(i)
# From positive to negative - Appraoch 2
number = int(input("Please type in a positive integer: "))
for i in range(-number, number + 1):
# Because in Python bool-type equals to
# 0 and 1 (False and True), condition can also be written as follows
# if i:
if i != 0:
print(i)
# List of stars
def list_of_stars(list: list):
for i in list:
print("*" * i)
list_of_stars([3, 7, 1, 1, 2])
# Anagrams - Approach 1
def anagrams(string1, string2):
return sorted(string1.lower()) == sorted(string2.lower())
print(anagrams("tAMe", "meta")) # True
print(anagrams("tame", "mate")) # True
print(anagrams("tame", "team")) # True
print(anagrams("tabby", "batty")) # False
print(anagrams("python", "java")) # False
# Anagrams - Approach 2
def anagrams(string1, string2):
list1 = []
list2 = []
for i in string1.lower():
list1.append(i)
for i in string2.lower():
list2.append(i)
list1.sort()
list2.sort()
return list1 == list2
print(anagrams("tAmE", "meta")) # True
print(anagrams("tame", "mate")) # True
print(anagrams("tAmE", "team")) # True
print(anagrams("tabby", "batty")) # False
print(anagrams("python", "java")) # False
# Anagram - Notes
string1 = "Abdullah"
list1 = []
for i in string1.lower():
list1.append(i)
list1.sort()
string2 = "Halludba"
list2 = []
for i in string2.lower():
list2.append(i)
list2.sort()
print(list1)
print(list2)
print(list1 == list2)
# Palindromes - Approach 1
def palindromes(string):
item = ""
for i in range(-1, -len(string)-1,-1):
item += string[i]
return string == item
while True:
string = input("Please type in a palindrome: ")
if palindromes(string.lower()) == True:
print(f"{string} is a palindrome!")
break
else:
print("that wasn't a palindrome")
# ⭐ Palindromes = Approach 2
def palindromes(word: str):
for i in range(len(word)//2): # code divides the string into half and assesses weather each character in each half is a match
if word[i] != word[len(word)-i-1]:
return False
return True
while True:
word = input("Please type in a palindrome: ")
if palindromes(word):
print(word, "is a palindrome!")
break
print("that wasn't a palindrome")
# Palindromes = Approach 2 explained
word = "neveroddoreven"
numbers = list(range(len(word)//2)) # -> range funtions runs half of the length of the string
print(numbers)
word[2] # -> character returned from the string index must match the reverse index
word[len(word)-1-2] # -> character returned from the reverse string index must match the standard index
# if each character in the left-to-right half of the string matches matches the right-to-left half, the string is a palindrome
# e.g. string = "neveroddoreven" would be split as:
# left-to-right half: n-e-v-e-r-o-d-d
# right-to-left half: o-d-d-o-r-e-v-e-n
# the last character of the right-to-left and first character of the left-to-right are compared until half of the word.
# The sum of positive numbers
def sum_of_positives(my_list: list) -> int:
sum = 0
for i in my_list:
if i > 0:
sum += i
return sum
numbers = [1, -2, 3, -4, 5]
number = sum_of_positives(numbers)
print(number)
# Even numbers
def even_numbers(my_list: list) -> list:
new_list = []
for i in my_list:
if i % 2 == 0:
new_list.append(i)
return new_list
my_list = [1, 2, 3, 4, 5]
new_list = even_numbers(my_list)
print("original", my_list)
print("new", new_list)
# The sum of lists
def list_sum(list1, list2):
new_list = []
for i in range(len(list1)):
sum = list1[i] + list2[i]
new_list.append(sum)
return new_list
a = [1, 2, 3]
b = [7, 8, 9]
list_sum(a,b)
# The sum of lists - Notes
a = [1, 2, 3]
b = [7, 8, 9]
# summing a list with another list simply appends the second list to the end of the first list as such:
a + b # [1, 2, 3, 7, 8, 9]
a = [1, 2, 3]
b = [7, 8, 9]
new_list = []
for i in range(len(a)):
sum = a[i] + b[i]
new_list.append(sum)
print(new_list)
# The sum of lists - Approach 2
def list_sum(list1: list, list2: list):
results = []
for i in range(len(list1)):
results.append(list1[i] + list2[i])
return results
# Another solution would be use zip-function,
# which creates new list by combining items in two or more lists
# for item1, item2 in zip(list1, list2):
# results.append(item1 + item2)
# The sum of lists - Approach 3
list1 = [1, 2, 3]
list2 = [7, 8, 9]
results = []
for item1, item2 in zip(list1, list2): # zip function combines two or more lists
results.append(item1 + item2)
print(results)
zip(list1, list2) # returns a cryptic data type <zip at 0x1ce80013340>
type(zip(list1, list2)) # data type = zip
list(zip(list1, list2)) # outputs a tuple which is a combination of two or more lists: [(1, 7), (2, 8), (3, 9)]
# the for loop here takes the two items at each index within the zip and assigns it to two for loop variables.
# Distinct numbers - Approach 1
def distinct_numbers(my_list):
new_list = []
sorted_list = sorted(my_list)
for i in range(len(sorted_list)):
if sorted_list[i] in new_list: # Condition looks at the new_list to assess wether the current number exists within the list
continue
else:
new_list.append(sorted_list[i])
return new_list
my_list = [3, 2, 2, 1, 3, 3, 1]
print(distinct_numbers(my_list)) # [1, 2, 3]
# Distinct numbers - Approach 2
def distinct_numbers(my_list):
new_list = []
sorted_list = sorted(my_list)
for i in range(len(sorted_list)):
if sorted_list[i] in sorted_list[:i]: # Condition looks at the sorted list up until the current index to assess repetition
continue
else:
new_list.append(sorted_list[i])
return new_list
my_list = [3, 2, 2, 1, 3, 3, 1]
print(distinct_numbers(my_list)) # [1, 2, 3]
my_list = [3, 2, 2, 1, 3, 3, 1]
list(range(len(my_list)))
# Distinct numbers - Approach 3
def distinct_numbers(my_list: list):
results = []
for item in my_list:
if item not in results: # rather than checking for existence with an "in" operator, "not in" operator checks for non-existence and returns true if the item does not exist in a list or a string.
results.append(item)
results.sort()
return results
my_list = [3, 2, 2, 1, 3, 3, 1]
print(distinct_numbers(my_list)) # [1, 2, 3]
# The length of the longest in the list
def length_of_longest(my_list: list):
max_len = 0
for i in my_list:
if len(i) > max_len:
max_len = len(i)
return max_len
my_list = ["first", "second", "fourth", "eleventh"]
result = length_of_longest(my_list)
print(result)
my_list = ["adele", "mark", "dorothy", "tim", "hedy", "richard"]
result = length_of_longest(my_list)
print(result)
# The shortest in the list
def shortest(my_list: list):
word = my_list[0]
for i in my_list:
if len(i) < len(word):
word = i
return word
my_list = ["first", "second", "fourth", "eleventh"]
result = shortest(my_list)
print(result)
my_list = ["adele", "mark", "dorothy", "tim", "hedy", "richard"]
result = shortest(my_list)
print(result)
# The shortest in the list - Approach 2
def shortest(names: list):
result = "" # creates an empty string helper variable
for nimi in names:
if result == "" or len(nimi) < len(result): # returns true when either the helper variable is empty OR if the length of the string in the list is less than the value stored inside the helper variable.
result = nimi
return result
# All the longest in the list - Approach 1
def all_the_longest(my_list: list):
max_len = 0
for i in my_list:
if len(i) > max_len:
max_len = len(i)
result = []
for i in my_list:
if len(i) == max_len:
result.append(i)
return result
my_list = ["first", "second", "fourth", "eleventh"]
result = all_the_longest(my_list)
print(result) # ['eleventh']
my_list = ["adele", "mark", "dorothy", "tim", "hedy", "richard"]
result = all_the_longest(my_list)
print(result) # ['dorothy', 'richard']
# ⭐ All the longest in the list - Approach 2
# At its core, the defined function loops through all the items within the input list and compares the length of each string to the length of the first string in the result list.
# If the string being assessed is larger, the result list is reset and contains only the new string.
# Otherwise, if the string is the same length as the first/existing string in the list, the string is appended to result list.
def all_the_longest(names: list):
result = []
for name in names:
if result == [] or len(name) > len(result[0]): # returns true when either the helper variable is empty OR if the length of the first string in the list is less than the value stored inside the helper variable.
result = [name] # if the above condition is true (i.e, if the list is empty or if the first content within the list is smaller than the value stored inside the helper variable), then the result list is reset with only the longest word placed in the list.
elif len(name) == len(result[0]): # Returns true when the helper variable is the same length as the first string in the list.
result.append(name) # if true, the result list is appended with an item of the equivalent length.
return result
my_list = ["first", "second", "fourth", "eleventh"]
result = all_the_longest(my_list)
print(result) # ['eleventh']
my_list = ["adele", "mark", "dorothy", "tim", "hedy", "richard"]
result = all_the_longest(my_list)
print(result) # ['dorothy', 'richard']