-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvpg.py
166 lines (131 loc) · 5.61 KB
/
vpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import argparse
from itertools import count
import gym
from gym.spaces import Box, Discrete
import numpy as np
import torch
from torch.distributions.categorical import Categorical
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
class MLP(nn.Module):
"A simple single layer MLP."
def __init__(self, input_shape, output_size, hidden_size):
super().__init__()
self.flattened_input_size = 1
for dim in input_shape:
self.flattened_input_size *= dim
self.fc1 = nn.Linear(self.flattened_input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = x.view(-1, self.flattened_input_size)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
class Policy:
def __init__(self, net):
self.net = net
def select_action(self, state):
"Returns action sampled from the policy distribution."
state = torch.as_tensor(state, dtype=torch.float)
logits = self.net(state.unsqueeze(0)).squeeze(0)
return Categorical(logits=logits).sample().item()
def log_probs(self, states, actions):
"Returns log probabilities of the actions given states."
logits = self.net(states)
return Categorical(logits=logits).log_prob(actions)
def run_epsiode(policy, env, render=False, max_len=1000):
"Runs one episodes according to the policy and returns the trajectory."
states = []
actions = []
rewards = []
state = env.reset()
done = False
while not done and len(states) < max_len:
if render:
env.render()
states.append(state)
action = policy.select_action(state)
actions.append(action)
state, reward, done, _ = env.step(action)
rewards.append(reward)
return states, actions, rewards
def collect_trajectories(policy, env, min_timesteps, gamma):
"Returns trajectories as lists of states, actions, rewards and returns."
states = []
actions = []
rewards = []
returns = []
for episode_num in count(1):
episode_states, epsiode_actions, episode_rewards = run_epsiode(policy, env)
episode_returns = calculate_returns(episode_rewards, gamma)
states.extend(episode_states)
actions.extend(epsiode_actions)
rewards.extend(episode_rewards)
returns.extend(episode_returns)
if len(states) >= min_timesteps:
break
states = torch.as_tensor(np.stack(states), dtype=torch.float)
actions = torch.as_tensor(actions, dtype=torch.long)
rewards = torch.as_tensor(rewards, dtype=torch.float)
returns = torch.as_tensor(returns, dtype=torch.float)
return states, actions, rewards, returns, episode_num
def calculate_returns(rewards, gamma):
"Calcultes returns for given sequence of rewards."
T = len(rewards)
returns = [0] * T
for t in range(T - 1, -1, -1):
returns[t] = rewards[t] + gamma * (returns[t + 1] if t + 1 < T else 0)
return returns
def optimiser_step(optimiser, loss):
"Update paramaters corresponding to the optimiser."
optimiser.zero_grad()
loss.backward()
optimiser.step()
def train(env_name, batch_size, hidden_size, gamma, policy_lr, value_fn_lr, test, render):
env = gym.make(env_name)
assert isinstance(env.observation_space, Box), "State space must be continuos."
assert isinstance(env.action_space, Discrete), "Action space must be discrete."
policy_net = MLP(env.observation_space.shape, env.action_space.n, hidden_size)
policy = Policy(policy_net)
value_fn = MLP(env.observation_space.shape, 1, hidden_size)
policy_optimiser = optim.Adam(policy.net.parameters(), lr=policy_lr)
value_fn_optimiser = optim.Adam(value_fn.parameters(), lr=value_fn_lr)
for i in count(1):
if test:
_, _, rewards, = run_epsiode(policy, env, render=render)
print("Episode {}: {}".format(i, sum(rewards)))
env.close()
env = gym.make(env_name)
# Collect trajectories and calculate rewards
states, actions, rewards, returns, episode_num = collect_trajectories(policy, env, batch_size, gamma)
# Calculate advantage
advantages = returns - value_fn(states).squeeze(1).detach()
# Calculate log probabilities
log_probs = policy.log_probs(states, actions)
# Multiply advantage by log probabilities to obtain policy loss
policy_loss = - (log_probs * advantages).sum() / episode_num
# Update the policy weights
optimiser_step(policy_optimiser, policy_loss)
# Update value function to better match the returns
value_fn_loss = F.mse_loss(value_fn(states).squeeze(1), returns)
optimiser_step(value_fn_optimiser, value_fn_loss)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--env", default="LunarLander-v2", type=str)
parser.add_argument("--batch_size", default=5000, type=int)
parser.add_argument("--hidden_size", default=32, type=int)
parser.add_argument("--gamma", default=0.99, type=float)
parser.add_argument("--policy_lr", default=1e-2, type=float)
parser.add_argument("--value_fn_lr", default=1e-2, type=float)
parser.add_argument("--no_test", action="store_true")
parser.add_argument("--no_render", action="store_true")
args = parser.parse_args()
train(env_name=args.env,
batch_size=args.batch_size,
hidden_size=args.hidden_size,
gamma=args.gamma,
policy_lr=args.policy_lr,
value_fn_lr=args.value_fn_lr,
test=not args.no_test,
render=not args.no_render)