Following are the python codes format for performance metrics of machine learning algorithms to save your time when performing a hackathon, just copy paste the format and use them to build your model.
Let us define sample actual and predicted values to understand the working of performance metrics for classification problem.
X_actual = [1, 1, 0, 1, 0, 0, 1, 0, 0, 0]
Y_pred = [1, 0, 1, 1, 1, 0, 1, 1, 0, 0]
from sklearn.metrics import confusion_matrix
results = confusion_matrix(X_actual, Y_predic)
print ('Confusion Matrix :')
print(results)
Output:
Confusion Matrix :
[[3 3]
[1 3]]
from sklearn.metrics import accuracy_score
print ('Accuracy Score is',accuracy_score(X_actual, Y_pred))
Output:
Accuracy Score is 0.6
from sklearn.metrics import classification_report
print ('Classification Report : ')
print (classification_report(X_actual, Y_pred))
Output:
Classification Report :
precision recall f1-score support
0 0.75 0.50 0.60 6
1 0.50 0.75 0.60 4
accuracy 0.60 10
macro avg 0.62 0.62 0.60 10
weighted avg 0.65 0.60 0.60 10
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_auc_score
print('AUC-ROC:',roc_auc_score(X_actual, Y_pred))
Output:
AUC-ROC: 0.625
from sklearn.metrics import log_loss
print('LOGLOSS Value is',log_loss(X_actual, Y_pred))
Output:
LOGLOSS Value is 13.815750437193334
Let us define sample actual and predicted values to understand the working of performance metrics for regression problem.
X_actual = [5, -1, 2, 10]
Y_pred = [3.5, -0.9, 2, 9.9]
from sklearn.metrics import r2_score
print ('R Squared =',r2_score(X_actual, Y_pred))
Output:
R Squared = 0.9656060606060606
from sklearn.metrics import mean_absolute_error
print ('MAE =',mean_absolute_error(X_actual, Y_pred))
Output:
MAE = 0.42499999999999993
from sklearn.metrics import mean_squared_error
print ('MSE =',mean_squared_error(X_actual, Y_pred))
Output:
MSE = 0.5674999999999999