forked from heterodb/pg-strom
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfloat2.h
316 lines (286 loc) · 6.26 KB
/
float2.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
/*
* float2.h
*
* Definition of half-precision floating-point
* --
* Copyright 2011-2023 (C) KaiGai Kohei <[email protected]>
* Copyright 2014-2023 (C) PG-Strom Developers Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the PostgreSQL License.
*/
#ifndef FLOAT2_H
#define FLOAT2_H
#include <stdint.h>
typedef uint16_t half_t;
#if defined(__CUDACC__)
#include <cuda_fp16.h>
typedef __half float2_t;
#elif defined(HAVE_FLOAT2)
typedef _Float16 float2_t;
#else
#define EMULATE_FLOAT2 1
typedef half_t float2_t;
#endif
typedef float float4_t;
typedef double float8_t;
/* parameters of floating-point */
#define FP16_FRAC_BITS (10)
#define FP16_EXPO_BITS (5)
#define FP16_EXPO_MIN (-14)
#define FP16_EXPO_MAX (15)
#define FP16_EXPO_BIAS (15)
#define FP32_FRAC_BITS (23)
#define FP32_EXPO_BITS (8)
#define FP32_EXPO_MIN (-126)
#define FP32_EXPO_MAX (127)
#define FP32_EXPO_BIAS (127)
#define FP64_FRAC_BITS (52)
#define FP64_EXPO_BITS (11)
#define FP64_EXPO_MIN (-1022)
#define FP64_EXPO_MAX (1023)
#define FP64_EXPO_BIAS (1023)
#ifndef INLINE_FUNCTION
#define INLINE_FUNCTION(TYPE) static inline TYPE
#endif
/* int/float reinterpret functions */
INLINE_FUNCTION(double)
__longlong_as_double__(const uint64_t ival)
{
#ifdef __CUDACC__
return __longlong_as_double(ival);
#else
union {
uint64_t ival;
double fval;
} datum;
datum.ival = ival;
return datum.fval;
#endif
}
INLINE_FUNCTION(uint64_t)
__double_as_longlong__(const double fval)
{
#ifdef __CUDACC__
return __double_as_longlong(fval);
#else
union {
uint64_t ival;
double fval;
} datum;
datum.fval = fval;
return datum.ival;
#endif
}
INLINE_FUNCTION(float)
__int_as_float__(const uint32_t ival)
{
#ifdef __CUDACC__
return __uint_as_float(ival);
#else
union {
uint32_t ival;
float fval;
} datum;
datum.ival = ival;
return datum.fval;
#endif
}
INLINE_FUNCTION(uint32_t)
__float_as_int__(const float fval)
{
#ifdef __CUDACC__
return __float_as_uint(fval);
#else
union {
uint32_t ival;
float fval;
} datum;
datum.fval = fval;
return datum.ival;
#endif
}
INLINE_FUNCTION(float2_t)
__short_as_half__(const uint16_t ival)
{
union {
uint16_t ival;
float2_t fval;
} datum;
datum.ival = ival;
return datum.fval;
}
INLINE_FUNCTION(uint16_t)
__half_as_short__(const float2_t fval)
{
union {
uint16_t ival;
float2_t fval;
} datum;
datum.fval = fval;
return datum.ival;
}
/*
* cast functions across floating point if emulation mode
*/
INLINE_FUNCTION(float2_t)
fp32_to_fp16(const float value)
{
#ifndef EMULATE_FLOAT2
return (float2_t)value;
#else
uint32_t x = __float_as_int__(value);
uint32_t u = (x & 0x7fffffffU);
uint32_t sign = ((x >> 16U) & 0x8000U);
uint32_t remainder;
uint32_t result = 0;
if (u >= 0x7f800000U)
{
/* NaN/+Inf/-Inf */
remainder = 0U;
result = ((u == 0x7f800000U) ? (sign | 0x7c00U) : 0x7fffU);
}
else if (u > 0x477fefffU)
{
/* Overflows */
remainder = 0x80000000U;
result = (sign | 0x7bffU);
}
else if (u >= 0x38800000U)
{
/* Normal numbers */
remainder = u << 19U;
u -= 0x38000000U;
result = (sign | (u >> 13U));
}
else if (u < 0x33000001U)
{
/* +0/-0 */
remainder = u;
result = sign;
}
else
{
/* Denormal numbers */
const uint32_t exponent = u >> 23U;
const uint32_t shift = 0x7eU - exponent;
uint32_t mantissa = (u & 0x7fffffU) | 0x800000U;
remainder = mantissa << (32U - shift);
result = (sign | (mantissa >> shift));
}
if ((remainder > 0x80000000U) ||
((remainder == 0x80000000U) && ((result & 0x1U) != 0U)))
result++;
return result;
#endif
}
INLINE_FUNCTION(float2_t)
fp64_to_fp16(double fval)
{
return fp32_to_fp16((float)fval);
}
INLINE_FUNCTION(float4_t)
fp16_to_fp32(float2_t fp16val)
{
#ifndef EMULATE_FLOAT2
return (float4_t)fp16val;
#else
uint32_t sign = ((uint32_t)(fp16val & 0x8000) << 16);
int32_t expo = ((fp16val & 0x7c00) >> 10);
int32_t frac = ((fp16val & 0x03ff));
uint32_t result;
if (expo == 0x1f)
{
if (frac == 0)
result = (sign | 0x7f800000); /* +/-Infinity */
else
result = 0xffffffff; /* NaN */
}
else if (expo == 0 && frac == 0)
result = sign; /* +/-0.0 */
else
{
if (expo == 0)
{
expo = FP16_EXPO_MIN;
while ((frac & 0x400) == 0)
{
frac <<= 1;
expo--;
}
frac &= 0x3ff;
}
else
expo -= FP16_EXPO_BIAS;
expo += FP32_EXPO_BIAS;
result = (sign | (expo << FP32_FRAC_BITS) | (frac << 13));
}
return __int_as_float__(result);
#endif
}
INLINE_FUNCTION(float8_t)
fp16_to_fp64(float2_t fp16val)
{
#ifndef EMULATE_FLOAT2
return (float8_t)fp16val;
#else
uint64_t sign = ((uint64_t)(fp16val & 0x8000) << 48);
int64_t expo = ((fp16val & 0x7c00) >> 10);
int64_t frac = ((fp16val & 0x03ff));
uint64_t result;
if (expo == 0x1f)
{
if (frac == 0)
result = (sign | 0x7f800000); /* +/-Infinity */
else
result = 0xffffffff; /* NaN */
}
else if (expo == 0 && frac == 0)
result = sign; /* +/-0.0 */
else
{
if (expo == 0)
{
expo = FP16_EXPO_MIN;
while ((frac & 0x400) == 0)
{
frac <<= 1;
expo--;
}
frac &= 0x3ff;
}
else
expo -= FP16_EXPO_BIAS;
expo += FP64_EXPO_BIAS;
result = (sign | (expo << FP64_FRAC_BITS) | (frac << 42));
}
return __longlong_as_double__(result);
#endif
}
#ifdef __cplusplus
INLINE_FUNCTION(float2_t) __to_fp16(float2_t fval) { return fval; }
INLINE_FUNCTION(float2_t) __to_fp16(float4_t fval) { return fp32_to_fp16(fval); }
INLINE_FUNCTION(float2_t) __to_fp16(float8_t fval) { return fp64_to_fp16(fval); }
INLINE_FUNCTION(float4_t) __to_fp32(float2_t fval) { return fp16_to_fp32(fval); }
INLINE_FUNCTION(float4_t) __to_fp32(float4_t fval) { return fval; }
INLINE_FUNCTION(float4_t) __to_fp32(float8_t fval) { return (float)fval; }
INLINE_FUNCTION(float8_t) __to_fp64(float2_t fval) { return fp16_to_fp64(fval); }
INLINE_FUNCTION(float8_t) __to_fp64(float4_t fval) { return (double)fval; }
INLINE_FUNCTION(float8_t) __to_fp64(float8_t fval) { return fval; }
INLINE_FUNCTION(float2_t)
__fp16_unary_plus(float2_t fval)
{
return fval;
}
INLINE_FUNCTION(float2_t)
__fp16_unary_minus(float2_t fval)
{
return __short_as_half__(__half_as_short__(fval) ^ 0x8000U);
}
INLINE_FUNCTION(float2_t)
__fp16_unary_abs(float2_t fval)
{
return __short_as_half__(__half_as_short__(fval) & 0x7fffU);
}
#endif
#endif /* FLOAT2_H */