-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathmod.rs
170 lines (146 loc) · 7.14 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
mod blockhash;
use {BitSet, HashCtxt, Image};
use self::HashAlg::*;
use HashVals::*;
use CowImage::*;
/// Hash algorithms implemented by this crate.
///
/// Implemented primarily based on the high-level descriptions on the blog Hacker Factor
/// written by Dr. Neal Krawetz: http://www.hackerfactor.com/
///
/// Note that `hash_width` and `hash_height` in these docs refer to the parameters of
/// [`HasherConfig::hash_size()`](struct.HasherConfig.html#method.hash_size).
///
/// ### Choosing an Algorithm
/// Each algorithm has different performance characteristics
#[derive(Clone, Copy, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub enum HashAlg {
/// The Mean hashing algorithm.
///
/// The image is converted to grayscale, scaled down to `hash_width x hash_height`,
/// the mean pixel value is taken, and then the hash bits are generated by comparing
/// the pixels of the descaled image to the mean.
///
/// This is the most basic hash algorithm supported, resistant only to changes in
/// resolution, aspect ratio, and overall brightness.
///
/// Further Reading:
/// http://www.hackerfactor.com/blog/?/archives/432-Looks-Like-It.html
Mean,
/// The Gradient hashing algorithm.
///
/// The image is converted to grayscale, scaled down to `(hash_width + 1) x hash_height`,
/// and then in row-major order the pixels are compared with each other, setting bits
/// in the hash for each comparison. The extra pixel is needed to have `hash_width` comparisons
/// per row.
///
/// This hash algorithm is as fast or faster than Mean (because it only traverses the
/// hash data once) and is more resistant to changes than Mean.
///
/// Further Reading:
/// http://www.hackerfactor.com/blog/index.php?/archives/529-Kind-of-Like-That.html
Gradient,
/// The Vertical-Gradient hashing algorithm.
///
/// Equivalent to [`Gradient`](#variant.Gradient) but operating on the columns of the image
/// instead of the rows.
VertGradient,
/// The Double-Gradient hashing algorithm.
///
/// An advanced version of [`Gradient`](#variant.Gradient);
/// resizes the grayscaled image to `(width / 2 + 1) x (height / 2 + 1)` and compares columns
/// in addition to rows.
///
/// This algorithm is slightly slower than `Gradient` (resizing the image dwarfs
/// the hash time in most cases) but the extra comparison direction may improve results (though
/// you might want to consider increasing
/// [`hash_size`](struct.HasherConfig.html#method.hash_size)
/// to accommodate the extra comparisons).
DoubleGradient,
/// The [Blockhash.io](https://blockhash.io) algorithm.
///
/// Compared to the other algorithms, this does not require any preprocessing steps and so
/// may be significantly faster at the cost of some resilience.
///
/// The algorithm is described in a high level here:
/// https://github.com/commonsmachinery/blockhash-rfc/blob/master/main.md
Blockhash,
/// EXHAUSTIVE MATCHING IS NOT RECOMMENDED FOR BACKWARDS COMPATIBILITY REASONS
/// New variants may be added in minor (x.[y + 1].z) releases
#[doc(hidden)]
#[serde(skip)]
__Nonexhaustive,
}
fn next_multiple_of_2(x: u32) -> u32 { x + 1 & !1 }
fn next_multiple_of_4(x: u32) -> u32 { x + 3 & !3 }
impl HashAlg {
pub (crate) fn hash_image<I, B>(&self, ctxt: &HashCtxt, image: &I) -> B
where I: Image, B: BitSet {
let post_gauss = ctxt.gauss_preproc(image);
let HashCtxt { width, height, .. } = *ctxt;
if *self == Blockhash {
return match post_gauss {
Borrowed(img) => blockhash::blockhash(img, width, height),
Owned(img) => blockhash::blockhash(&img, width, height),
};
}
let grayscale = post_gauss.to_grayscale();
let (resize_width, resize_height) = self.resize_dimensions(width, height);
let hash_vals = ctxt.calc_hash_vals(&*grayscale, resize_width, resize_height);
let rowstride = resize_width as usize;
match (*self, hash_vals) {
(Mean, Floats(ref floats)) => B::from_bools(mean_hash_f32(floats)),
(Mean, Bytes(ref bytes)) => B::from_bools(mean_hash_u8(bytes)),
(Gradient, Floats(ref floats)) => B::from_bools(gradient_hash(floats, rowstride)),
(Gradient, Bytes(ref bytes)) => B::from_bools(gradient_hash(bytes, rowstride)),
(VertGradient, Floats(ref floats)) => B::from_bools(vert_gradient_hash(floats,
rowstride)),
(VertGradient, Bytes(ref bytes)) => B::from_bools(vert_gradient_hash(bytes, rowstride)),
(DoubleGradient, Floats(ref floats)) => B::from_bools(double_gradient_hash(floats,
rowstride)),
(DoubleGradient, Bytes(ref bytes)) => B::from_bools(double_gradient_hash(bytes,
rowstride)),
(Blockhash, _) | (__Nonexhaustive, _) => unreachable!(),
}
}
pub (crate) fn round_hash_size(&self, width: u32, height: u32) -> (u32, u32) {
match *self {
DoubleGradient => (next_multiple_of_2(width), next_multiple_of_2(height)),
Blockhash => (next_multiple_of_4(width), next_multiple_of_4(height)),
_ => (width, height),
}
}
pub (crate) fn resize_dimensions(&self, width: u32, height: u32) -> (u32, u32) {
match *self {
Mean => (width, height),
Blockhash => panic!("Blockhash algorithm does not resize"),
Gradient => (width + 1, height),
VertGradient => (width, height + 1),
DoubleGradient => (width / 2 + 1, height / 2 + 1),
__Nonexhaustive => panic!("not a real hash algorithm"),
}
}
}
fn mean_hash_u8<'a>(luma: &'a [u8]) -> impl Iterator<Item = bool> + 'a {
let mean = (luma.iter().map(|&l| l as u32).sum::<u32>() / luma.len() as u32) as u8;
luma.iter().map(move |&x| x >= mean)
}
fn mean_hash_f32<'a>(luma: &'a [f32]) -> impl Iterator<Item = bool> + 'a {
let mean = luma.iter().sum::<f32>() / luma.len() as f32;
luma.iter().map(move |&x| x >= mean)
}
/// The guts of the gradient hash separated so we can reuse them
fn gradient_hash_impl<I>(luma: I) -> impl Iterator<Item = bool>
where I: IntoIterator + Clone, <I as IntoIterator>::Item: PartialOrd {
luma.clone().into_iter().skip(1).zip(luma).map(|(this, last)| last < this)
}
fn gradient_hash<'a, T: PartialOrd>(luma: &'a [T], rowstride: usize) -> impl Iterator<Item = bool> + 'a {
luma.chunks(rowstride).flat_map(gradient_hash_impl)
}
fn vert_gradient_hash<'a, T: PartialOrd>(luma: &'a [T], rowstride: usize) -> impl Iterator<Item = bool> + 'a {
(0 .. rowstride).map(move |col_start| luma[col_start..].iter().step_by(rowstride))
.flat_map(gradient_hash_impl)
}
fn double_gradient_hash<'a, T: PartialOrd>(luma: &'a [T], rowstride: usize) -> impl Iterator<Item = bool> + 'a {
gradient_hash(luma, rowstride).chain(vert_gradient_hash(luma, rowstride))
}