forked from alisw/AliRoot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAliZDCFragment.cxx
595 lines (510 loc) · 18.7 KB
/
AliZDCFragment.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
/**************************************************************************
* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
* *
* Author: The ALICE Off-line Project. *
* Contributors are mentioned in the code where appropriate. *
* *
* Permission to use, copy, modify and distribute this software and its *
* documentation strictly for non-commercial purposes is hereby granted *
* without fee, provided that the above copyright notice appears in all *
* copies and that both the copyright notice and this permission notice *
* appear in the supporting documentation. The authors make no claims *
* about the suitability of this software for any purpose. It is *
* provided "as is" without express or implied warranty. *
**************************************************************************/
// ******************************************************************
//
// Class for nuclear fragments formation
//
// ******************************************************************
// --- Standard libraries
#include <stdlib.h>
// --- ROOT system
#include <TRandom.h>
#include <TFile.h>
#include <TF1.h>
// --- AliRoot classes
#include "AliZDCFragment.h"
ClassImp(AliZDCFragment)
int comp(const void *i,const void *j) {return *(int *)i - *(int *)j;}
//_____________________________________________________________________________
AliZDCFragment::AliZDCFragment():
fB(0),
fZbAverage(0),
fNimf(0),
fZmax(0),
fTau(0),
fNalpha(0),
fZtot(0),
fNtot(0),
fZboundvsbOO(NULL)
{
//
// Default constructor
//
for(Int_t i=0; i<=99; i++){
fZZ[i] = 0;
fNN[i] = 0;
}
}
//_____________________________________________________________________________
AliZDCFragment::AliZDCFragment(Float_t b):
TNamed(" "," "),
fB(b),
fZbAverage(0),
fNimf(0),
fZmax(0),
fTau(0),
fNalpha(0),
fZtot(0),
fNtot(0)
{
//
// Standard constructor
//
for(Int_t i=0; i<=99; i++){
fZZ[i] = 0;
fNN[i] = 0;
}
TFile *filepar = TFile::Open("$ALICE_ROOT/ZDC/fragOO.root");
if (!filepar){
printf(" No file $ALICE_ROOT/ZDC/fragOO.root found \n");
return;
}
TF1 *fzb = (TF1*) filepar->Get("fzb");
fZboundvsbOO = (TF1*) filepar->Get("fzb");
filepar->Close();
}
//_____________________________________________________________________________
void AliZDCFragment::GenerateIMF()
{
// Coefficients of polynomial for average number of IMF
const Float_t kParamNimf[5]={0.011236,1.8364,56.572,-116.24,58.289};
// Coefficients of polynomial for fluctuations on average number of IMF
const Float_t kParamFluctNimf[4]={-0.13176,2.9392,-5.2147,2.3092};
// Coefficients of polynomial for average maximum Z of fragments
//const Float_t kParamZmax[4]={0.16899,14.203,-2.8284,65.036};
const Float_t kParamZmax[4]={0.16899,14.203,-2.8284,70.5};
// Coefficients of polynomial for fluctuations on maximum Z of fragments
const Float_t kParamFluctZmax[5]={0.013782,-0.17282,1.5065,1.0654,-2.4317};
// Coefficients of polynomial for exponent tau of fragments Z distribution
const Float_t kParamTau[3]={6.7233,-15.85,13.047};
//Coefficients of polynomial for average number of alphas
const Float_t kParamNalpha[4]={-0.68554,39.605,-68.311,30.165};
// Coefficients of polynomial for fluctuations on average number of alphas
const Float_t kParamFluctNalpha[5]={0.283,6.2141,-17.113,17.394,-6.6084};
// Coefficients of function for Pb nucleus skin
const Float_t kParamSkinPb[2]={0.762408, 20.};
// Thickness of nuclear surface
//const Float_t kNuclearThick = 0.52;
// Maximum impact parameter for U [r0*A**(1/3)]
const Float_t kbMaxU = 14.87;
// Maximum impact parameter for Pb [r0*A**(1/3)]
//const Float_t kbMaxPb = 14.22+4*kNuclearThick;
const Float_t kbMaxPb = 14.22;
// Z of the projectile
const Float_t kZProj = 82.;
// From b(Pb) to b(U)
if(fB>kbMaxPb) fB = 2*kbMaxPb-fB;
Float_t bU = fB*kbMaxU/kbMaxPb;
// From b(U) to Zbound(U)
// --- A.Schuttauf et al, Nuc.Phys. A607 (1996) 457 ---------------
// From geometrical consideration and from dsigma/dZbound for U+U,
// which is approx. constant, the constant value is found
// integrating the nucleus cross surface from 0 to bmax=R1+R2 where
// R = 1.2*A**(1/3). This value has been measured in Aladin (U+U).
Float_t zbU = bU*bU*TMath::Pi()/7.48;
// Rescale Zbound for Pb
fZbAverage = kZProj/92.*zbU;
// Zbound is proportional to b**2 up to b < kbMaxPb-2*kNuclearThick
// and then it is an increasing exponential, imposing that at
// b=kbMaxPb-2kNuclearThick the two functions have the same derivative
//Float_t bCore = kbMaxPb-2*kNuclearThick;
if(fB>kbMaxPb){
fZbAverage = TMath::Exp(-kParamSkinPb[0]*(fB-kParamSkinPb[1]));
//printf(" b = %1.2f fm Z_bound %1.2f\n", fB, fZbAverage);
}
if(fZbAverage>kZProj) fZbAverage = kZProj;
Float_t zbNorm = fZbAverage/kZProj;
Float_t bNorm = fB/kbMaxPb;
// From Zbound to <Nimf>,<Zmax>,tau
// Polinomial fits to Aladin distribution
// --- A.Schuttauf et al, Nuc.Phys. A607 (1996) 457.
Float_t averageNimf = kParamNimf[0]+kParamNimf[1]*zbNorm+kParamNimf[2]*
TMath::Power(zbNorm,2)+kParamNimf[3]*TMath::Power(zbNorm,3)+
kParamNimf[4]*TMath::Power(zbNorm,4);
// Add fluctuation: from Singh et al.
Float_t fluctNimf = kParamFluctNimf[0]+kParamFluctNimf[1]*zbNorm+
kParamFluctNimf[2]*TMath::Power(zbNorm,2)+kParamFluctNimf[3]
*TMath::Power(zbNorm,3);
Float_t xx = gRandom->Gaus(0.0,1.0);
fluctNimf = fluctNimf*xx;
fNimf = Int_t(0.5+averageNimf+fluctNimf);
Float_t y = gRandom->Rndm();
if(y < ((averageNimf+fluctNimf)-fNimf)) fNimf += 1;
if(fNimf ==0 && zbNorm>0.75) fNimf = 1;
Float_t averageZmax = kParamZmax[0]+kParamZmax[1]*zbNorm+kParamZmax[2]*
TMath::Power(zbNorm,2)+kParamZmax[3]*TMath::Power(zbNorm,3);
fTau = kParamTau[0]+kParamTau[1]*zbNorm+kParamTau[2]*TMath::Power(zbNorm,2);
// Add fluctuation to mean value of Zmax (see Hubele)
Float_t fluctZmax = kParamFluctZmax[0]+kParamFluctZmax[1]*zbNorm+
kParamFluctZmax[2]*TMath::Power(zbNorm,2)+kParamFluctZmax[3]*
TMath::Power(zbNorm,3)+kParamFluctZmax[4]*TMath::Power(zbNorm,4);
fluctZmax = fluctZmax*kZProj/6.;
Float_t xg = gRandom->Gaus(0.0,1.0);
fluctZmax = fluctZmax*xg;
fZmax = (averageZmax+fluctZmax);
if(fZmax>kZProj) fZmax = kZProj;
// printf("\n\n ------------------------------------------------------------");
// printf("\n Generation of nuclear fragments\n");
// printf("\n fNimf = %d\n", fNimf);
// printf("\n fZmax = %f\n", fZmax);
// Find the number of alpha particles
// from Singh et al. : Pb+emulsion
Float_t averageAlpha = kParamNalpha[0]+kParamNalpha[1]*zbNorm+
kParamNalpha[2]*TMath::Power(zbNorm,2)+kParamNalpha[3]*
TMath::Power(zbNorm,3);
Float_t fluctAlpha = kParamFluctNalpha[0]+kParamFluctNalpha[1]*
zbNorm+kParamFluctNalpha[2]*TMath::Power(zbNorm,2)+
kParamFluctNalpha[3]*TMath::Power(zbNorm,3)+
kParamFluctNalpha[4]*TMath::Power(zbNorm,4);
Float_t xxx = gRandom->Gaus(0.0,1.0);
fluctAlpha = fluctAlpha*xxx;
fNalpha = Int_t(0.5+averageAlpha+fluctAlpha);
Float_t yy = gRandom->Rndm();
if(yy < ((averageAlpha+fluctAlpha)-fNalpha)) fNalpha += 1;
// 2 possibilities:
// 1) for bNorm < 0.9 ==> first remove alphas, then fragments
// 2) for bNorm > 0.9 ==> first remove fragments, then alphas
Int_t choice = 0;
Float_t zbFrag = 0, sumZ = 0.;
if(bNorm<=0.9) {
// remove alpha from zbound to find zbound for fragments (Z>=3)
zbFrag = fZbAverage-fNalpha*2;
choice = 1;
}
else {
zbFrag = fZbAverage;
choice = 0;
}
// printf("\n choice = %d, fZbAverage = %f, zbFrag = %f \n", choice, fZbAverage, zbFrag);
// Check if zbFrag < fZmax
if(zbFrag<=fZmax) {
if(fNimf>0 && zbFrag>=2){
fNimf = 1;
fZZ[0] = Int_t(0.5+zbFrag);
sumZ = zbFrag;
}
else {
fNimf = 0;
}
return;
}
// Prepare the exponential charge distribution dN/dZ
if(fZmax <= 0.01) {
fNimf = 0;
return;
}
if(fNimf == 0) {
fNimf = 0;
return;
}
TF1 *funTau = new TF1("funTau","1./(x**[0])",0.01,fZmax);
funTau->SetParameter(0,fTau);
// Extract randomly the charge of the fragments from the distribution
Float_t * zz = new Float_t[fNimf];
for(int j=0; j<fNimf; j++){
zz[j] =0;
}
for(int i=0; i<fNimf; i++){
zz[i] = Float_t(funTau->GetRandom());
// printf("\n zz[%d] = %f \n",i,zz[i]);
}
delete funTau;
// Sorting vector in ascending order with C function QSORT
qsort((void*)zz,fNimf,sizeof(Float_t),comp);
// for(Int_t i=0; i<fNimf; i++){
// printf("\n After sorting -> zz[%d] = %f \n",i,zz[i]);
// }
// Rescale the maximum charge to fZmax
for(int j=0; j<fNimf; j++){
fZZ[j] = Int_t (0.5+zz[j]*fZmax/zz[fNimf-1]);
if(fZZ[j]<3) fZZ[j] = 3;
// printf("\n fZZ[%d] = %d \n",j,fZZ[j]);
}
delete[] zz;
// Check that the sum of the bound charges is not > than Zbound-Zalfa
for(Int_t ii=0; ii<fNimf; ii++){
sumZ += fZZ[ii];
}
Int_t k = 0;
if(sumZ>zbFrag){
for(int i=0; i< fNimf; i++){
k += 1;
sumZ -= fZZ[i];
if(sumZ<=zbFrag){
fNimf -= (i+1);
break;
}
}
}
else {
if(choice == 1) return;
Int_t iDiff = Int_t(0.5+(zbFrag-sumZ)/2);
if(iDiff<fNalpha){
fNalpha=iDiff;
return;
}
else{
return;
}
}
fNimf += k;
for(int i=0; i<fNimf; i++){
fZZ[i] = fZZ[i+k];
}
fNimf -= k;
sumZ=0;
for(int i=0; i<fNimf; i++){
sumZ += fZZ[i];
}
}
//_____________________________________________________________________________
void AliZDCFragment::GenerateIMFOO()
{
// Coefficients of polynomial for average number of IMF
const Float_t kParamNimf[5]={0.011236,1.8364,56.572,-116.24,58.289};
// Coefficients of polynomial for fluctuations on average number of IMF
const Float_t kParamFluctNimf[4]={-0.13176,2.9392,-5.2147,2.3092};
// Coefficients of polynomial for average maximum Z of fragments
const Float_t kParamZmax[4]={0.0165,1.3856,-0.2694,6.74};
// Coefficients of polynomial for fluctuations on maximum Z of fragments
const Float_t kParamFluctZmax[5]={0.013782/10.5,-0.17282/10.5,1.5065/10.5,1.0654/10.5,-2.4317/10.5};
// Coefficients of polynomial for exponent tau of fragments Z distribution
const Float_t kParamTau[3]={6.7233,-15.85,13.047};
//Coefficients of polynomial for average number of alphas
const Float_t kParamNalpha[4]={-0.68554/10.5,39.605/10.5,-68.311/10.5,30.165/10.5};
// Coefficients of polynomial for fluctuations on average number of alphas
const Float_t kParamFluctNalpha[5]={0.283,6.2141,-17.113,17.394,-6.6084};
// Maximum impact parameter for U [r0*A**(1/3)]
const Float_t kbMaxU = 14.87;
// Maximum impact parameter for O from WS
const Float_t kbMaxO = 2*(2.7+0.2);//5.8 fm
// Z of the projectile
const Float_t kZProj = 8.;
fZbAverage = fZboundvsbOO->Eval(fB);
//printf(" b %f Zbound %f\n", fB, fZbAverage);
// Zbound is proportional to b**2 up to b < kbMaxPb-2*kNuclearThick
// and then it is an increasing exponential, imposing that at
// b=kbMaxPb-2kNuclearThick the two functions have the same derivative
//Float_t bCore = kbMaxPb-2*kNuclearThick;
//if(fB>kbMaxPb){ // non sara' mai a causa della def. a linea 347!!!
// fZbAverage = TMath::Exp(-kParamSkinPb[0]*(fB-kParamSkinPb[1]));
// //printf(" b = %1.2f fm Z_bound %1.2f\n", fB, fZbAverage);
//}
if(fZbAverage>kZProj) fZbAverage = kZProj;
Float_t zbNorm = fZbAverage/kZProj;
Float_t bNorm = fB/kbMaxO;
// From Zbound to <Nimf>,<Zmax>,tau
// Polinomial fits to Aladin distribution
// --- A.Schuttauf et al, Nuc.Phys. A607 (1996) 457.
Float_t averageNimf = kParamNimf[0]+kParamNimf[1]*zbNorm+kParamNimf[2]*
TMath::Power(zbNorm,2)+kParamNimf[3]*TMath::Power(zbNorm,3)+
kParamNimf[4]*TMath::Power(zbNorm,4);
// Add fluctuation: from Singh et al.
Float_t fluctNimf = kParamFluctNimf[0]+kParamFluctNimf[1]*zbNorm+
kParamFluctNimf[2]*TMath::Power(zbNorm,2)+kParamFluctNimf[3]
*TMath::Power(zbNorm,3);
Float_t xx = gRandom->Gaus(0.0,1.0);
fluctNimf = fluctNimf*xx;
fNimf = Int_t(0.5+averageNimf+fluctNimf);
Float_t y = gRandom->Rndm();
if(y < ((averageNimf+fluctNimf)-fNimf)) fNimf += 1;
if(fNimf ==0 && zbNorm>0.75) fNimf = 1;
Float_t averageZmax = kParamZmax[0]+kParamZmax[1]*zbNorm+kParamZmax[2]*
TMath::Power(zbNorm,2)+kParamZmax[3]*TMath::Power(zbNorm,3);
fTau = kParamTau[0]+kParamTau[1]*zbNorm+kParamTau[2]*TMath::Power(zbNorm,2);
// Add fluctuation to mean value of Zmax (see Hubele)
Float_t fluctZmax = kParamFluctZmax[0]+kParamFluctZmax[1]*zbNorm+
kParamFluctZmax[2]*TMath::Power(zbNorm,2)+kParamFluctZmax[3]*
TMath::Power(zbNorm,3)+kParamFluctZmax[4]*TMath::Power(zbNorm,4);
fluctZmax = fluctZmax*kZProj/6.;
Float_t xg = gRandom->Gaus(0.0,1.0);
fluctZmax = fluctZmax*xg;
fZmax = (averageZmax+fluctZmax);
if(fZmax>kZProj) fZmax = kZProj;
// printf("\n\n ------------------------------------------------------------");
// printf("\n Generation of nuclear fragments\n");
// printf("\n fNimf = %d\n", fNimf);
// printf("\n fZmax = %f\n", fZmax);
// Find the number of alpha particles
// from Singh et al. : Pb+emulsion
Float_t averageAlpha = kParamNalpha[0]+kParamNalpha[1]*zbNorm+
kParamNalpha[2]*TMath::Power(zbNorm,2)+kParamNalpha[3]*
TMath::Power(zbNorm,3);
Float_t fluctAlpha = kParamFluctNalpha[0]+kParamFluctNalpha[1]*
zbNorm+kParamFluctNalpha[2]*TMath::Power(zbNorm,2)+
kParamFluctNalpha[3]*TMath::Power(zbNorm,3)+
kParamFluctNalpha[4]*TMath::Power(zbNorm,4);
Float_t xxx = gRandom->Gaus(0.0,1.0);
fluctAlpha = fluctAlpha*xxx;
fNalpha = Int_t(0.5+averageAlpha+fluctAlpha);
Float_t yy = gRandom->Rndm();
if(yy < ((averageAlpha+fluctAlpha)-fNalpha)) fNalpha += 1;
// 2 possibilities:
// 1) for bNorm < 0.9 ==> first remove alphas, then fragments
// 2) for bNorm > 0.9 ==> first remove fragments, then alphas
Int_t choice = 0;
Float_t zbFrag = 0, sumZ = 0.;
if(bNorm<=0.9 && fZbAverage>=(fNalpha*2)) { // second condition added for O (zbFrag>0)!!!
// remove alpha from zbound to find zbound for fragments (Z>=3)
zbFrag = fZbAverage-fNalpha*2;
choice = 1;
}
else {
zbFrag = fZbAverage;
choice = 0;
}
// printf("\n choice = %d, fZbAverage = %f, zbFrag = %f \n", choice, fZbAverage, zbFrag);
// Check if zbFrag < fZmax
if(zbFrag<=fZmax) {
if(fNimf>0 && zbFrag>=2){
fNimf = 1;
fZZ[0] = Int_t(0.5+zbFrag);
sumZ = zbFrag;
}
else {
fNimf = 0;
}
return;
}
// Prepare the exponential charge distribution dN/dZ
if((fZmax <= 0.01) || (fNimf == 0)) {
fNimf = 0;
return;
}
TF1 *funTau = new TF1("funTau","1./(x**[0])",0.01,fZmax);
funTau->SetParameter(0,fTau);
// Extract randomly the charge of the fragments from the distribution
Float_t * zz = new Float_t[fNimf];
for(int i=0; i<fNimf; i++){
zz[i] = Float_t(funTau->GetRandom());
// printf("\n zz[%d] = %f \n",i,zz[i]);
}
delete funTau;
// Sorting vector in ascending order with C function QSORT
qsort((void*)zz,fNimf,sizeof(Float_t),comp);
// for(Int_t i=0; i<fNimf; i++){
// printf("\n After sorting -> zz[%d] = %f \n",i,zz[i]);
// }
// Rescale the maximum charge to fZmax
for(int j=0; j<fNimf; j++){
fZZ[j] = Int_t (0.5+zz[j]*fZmax/zz[fNimf-1]);
if(fZZ[j]<3) fZZ[j] = 3;
// printf("\n fZZ[%d] = %d \n",j,fZZ[j]);
}
delete[] zz;
// Check that the sum of the bound charges is not > than Zbound-Zalfa
for(Int_t ii=0; ii<fNimf; ii++){
sumZ += fZZ[ii];
}
Int_t k = 0;
if((sumZ-zbFrag)>=0.1){
for(int i=0; i< fNimf; i++){
k += 1;
sumZ -= fZZ[i];
if(sumZ<=zbFrag){
fNimf -= (i+1);
break;
}
}
}
else {
if(choice == 1) return;
Int_t iDiff = Int_t(0.5+(zbFrag-sumZ)/2);
if(iDiff<fNalpha){
fNalpha=iDiff;
return;
}
else{
return;
}
}
fNimf += k;
for(int i=0; i<fNimf; i++){
fZZ[i] = fZZ[i+k];
}
fNimf -= k;
sumZ=0;
for(int i=0; i<fNimf; i++){
sumZ += fZZ[i];
}
}
//_____________________________________________________________________________
void AliZDCFragment::AttachNeutrons()
{
//
// Prepare nuclear fragment by attaching a suitable number of neutrons
//
const Float_t kAIon[68]={1.87612,2.80943,3.7284,5.60305,6.53536,
6.53622,8.39479,9.32699,10.2551,11.17793,
13.04378,14.89917,17.6969,18.62284,21.41483,
22.34193,25.13314,26.06034,28.85188,29.7818,
32.57328,33.50356,36.29447,37.22492,41.87617,
44.66324,47.45401,48.38228,51.17447,52.10307,
54.89593,53.96644,58.61856,59.54963,68.85715,
74.44178,78.16309,81.88358,83.74571,91.19832,
98.64997,106.10997,111.68821,122.86796,
128.45793,
130.32111,141.51236,
141.55,146.477,148.033,152.699,153.631,
155.802,157.357,162.022,162.984,166.2624,
168.554,171.349,173.4536,177.198,179.0518,
180.675,183.473,188.1345,190.77,193.729,
221.74295};
const Int_t kZIon[68]={1,1,2,3,3,
4,4,5,5,6,
7,8,9,10,11,
12,13,14,15,16,
17,18,19,20,21,
22,23,24,25,26,
27,28,29,30,32,
34,36,38,40,42,
46,48,50,54,56,
58,62,
63,64,65,66,67,
68,69,70,71,72,
73,74,75,76,77,
78,79,80,81,82,
92};
Int_t iZ, iA;
// printf("\n fNimf=%d\n",fNimf);
for(Int_t i=0; i<fNimf; i++) {
for(Int_t j=0; j<68; j++) {
iZ = kZIon[j];
if((fZZ[i]-iZ) == 0){
iA = Int_t(kAIon[j]/0.93149432+0.5);
fNN[i] = iA - iZ;
break;
}
else if((fZZ[i]-iZ) < 0){
fZZ[i] = kZIon[j-1];
iA = Int_t (kAIon[j-1]/0.93149432+0.5);
fNN[i] = iA - kZIon[j-1];
break;
}
}
fZtot += fZZ[i];
fNtot += fNN[i];
}
}
//_____________________________________________________________________________
Float_t AliZDCFragment::DeuteronNumber()
{
// Calculates the fraction of deuterum nucleus produced
//
Float_t deuteronProdPar[2] = {-0.068,0.0385};
Float_t deutNum = deuteronProdPar[0] + deuteronProdPar[1]*fB;
if(deutNum<0.) deutNum = 0.;
return deutNum;
}