forked from tomgoldstein/loss-landscape
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmpi4pytorch.py
executable file
·115 lines (93 loc) · 3.04 KB
/
mpi4pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import numpy as np
import torch
from mpi4py import MPI
def setup_MPI():
try:
comm = MPI.COMM_WORLD
# Convert the Object to a Class so that it is possible to add attributes later
class A(MPI.Intracomm):
pass
comm = A(comm)
except:
comm = None
return comm
def print_once(comm, *message):
if not comm or comm.Get_rank()==0:
print (''.join(str(i) for i in message))
def is_master(comm):
return not comm or comm.Get_rank()==0
def allreduce_max(comm, array, display_info=False):
if not comm:
return array
array = np.asarray(array, dtype='d')
total = np.zeros_like(array)
float_min = np.finfo(np.float).min
total.fill(float_min)
if display_info:
print ("(%d): sum=%f : size=%d"%(get_rank(comm), np.sum(array), array.nbytes))
rows = str(comm.gather(array.shape[0]))
cols = str(comm.gather(array.shape[1]))
print_once(comm, "reduce: %s, %s"%(rows, cols))
comm.Allreduce(array, total, op=MPI.MAX)
return total
def allreduce_min(comm, array, display_info=False):
if not comm:
return array
array = np.asarray(array, dtype='d')
total = np.zeros_like(array)
float_max = np.finfo(np.float).max
total.fill(float_max)
if display_info:
print ("(%d): sum=%f : size=%d"%(get_rank(comm), np.sum(array), array.nbytes))
rows = str(comm.gather(array.shape[0]))
cols = str(comm.gather(array.shape[1]))
print_once(comm, "reduce: %s, %s"%(rows, cols))
comm.Allreduce(array, total, op=MPI.MIN)
return total
def reduce_max(comm, array, display_info=False):
if not comm:
return array
array = np.asarray(array, dtype='d')
total = np.zeros_like(array)
float_min = np.finfo(np.float).min
total.fill(float_min)
if display_info:
print ("(%d): sum=%f : size=%d"%(get_rank(comm), np.sum(array), array.nbytes))
rows = str(comm.gather(array.shape[0]))
cols = str(comm.gather(array.shape[1]))
print_once(comm, "reduce: %s, %s"%(rows, cols))
comm.Reduce(array, total, op=MPI.MAX, root=0)
return total
def reduce_min(comm, array, display_info=False):
if not comm:
return array
array = np.asarray(array, dtype='d')
total = np.zeros_like(array)
float_max = np.finfo(np.float).max
total.fill(float_max)
if display_info:
print ("(%d): sum=%f : size=%d"%(get_rank(comm), np.sum(array), array.nbytes))
rows = str(comm.gather(array.shape[0]))
cols = str(comm.gather(array.shape[1]))
print_once(comm, "reduce: %s, %s"%(rows, cols))
comm.Reduce(array, total, op=MPI.MIN, root=0)
return total
def barrier(comm):
if not comm:
return
comm.barrier()
def get_mpi_info():
try:
return MPI.get_vendor()
except ImportError:
return "none"
def get_rank(comm):
try:
return comm.Get_rank()
except ImportError:
return 0
def get_num_procs(comm):
try:
return comm.Get_size()
except ImportError:
return 1