Official repository for A-OKVQA: A Benchmark for Visual Question Answering using World Knowledge.
Links: [Paper] [Website] [Leaderboard]
The Visual Question Answering (VQA) task aspires to provide a meaningful testbed for the development of AI models that can jointly reason over visual and natural language inputs. Despite a proliferation of VQA datasets, this goal is hindered by a set of common limitations. These include a reliance on relatively simplistic questions that are repetitive in both concepts and linguistic structure, little world knowledge needed outside of the paired image, and limited reasoning required to arrive at the correct answer. We introduce A-OKVQA, a crowdsourced dataset composed of a diverse set of about 25K questions requiring a broad base of commonsense and world knowledge to answer. In contrast to the existing knowledge-based VQA datasets, the questions generally cannot be answered by simply querying a knowledge base, and instead require some form of commonsense reasoning about the scene depicted in the image. We demonstrate the potential of this new dataset through a detailed analysis of its contents and baseline performance measurements over a variety of state-of-the-art vision–language models.
git clone --single-branch --recurse-submodules [email protected]:allenai/aokvqa.git
cd aokvqa
export PYTHONPATH=.
conda env create --name aokvqa
conda activate aokvqa
export AOKVQA_DIR=./datasets/aokvqa/
mkdir -p ${AOKVQA_DIR}
curl https://prior-datasets.s3.us-east-2.amazonaws.com/aokvqa/aokvqa_v1p0.zip
unzip aokvqa_v1p0.zip -d ${AOKVQA_DIR}; rm aokvqa_v1p0.zip
Downloading images/annotations from COCO 2017
export COCO_DIR=./datasets/coco/
mkdir -p ${COCO_DIR}
for split in train val test; do
wget "http://images.cocodataset.org/zips/${split}2017.zip"
unzip "${split}2017.zip" -d ${COCO_DIR}; rm "${split}2017.zip"
done
wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
unzip annotations_trainval2017.zip -d ${COCO_DIR}; rm annotations_trainval2017.zip
Loading our dataset is easy! Just grab our aokvqa_utils.py file and refer to the following code.
import os
import aokvqa_utils
aokvqa_dir = os.getenv('AOKVQA_DIR')
train_dataset = aokvqa_utils.load_aokvqa(aokvqa_dir, 'train')
val_dataset = aokvqa_utils.load_aokvqa(aokvqa_dir, 'val')
test_dataset = aokvqa_utils.load_aokvqa(aokvqa_dir, 'test')
Example dataset entry
dataset_example = train_dataset[0]
print(dataset_example['question_id'])
# 22MexNkBPpdZGX6sxbxVBH
coco_dir = os.getenv('COCO_DIR')
image_path = aokvqa_utils.get_coco_path('train', dataset_example['image_id'], coco_dir)
print(image_path)
# ./datasets/coco/train2017/000000299207.jpg
print(dataset_example['question'])
print(dataset_example['choices'])
# What is the man by the bags awaiting?
# ['skateboarder', 'train', 'delivery', 'cab']
correct_choice = dataset_example['choices'][ dataset_example['correct_choice_idx'] ]
# Corrrect: cab
print(dataset_example['rationales'][0])
# A train would not be on the street, he would not have luggage waiting for a delivery, and the skateboarder is there and not paying attention to him so a cab is the only possible answer.
Please prepare a predictions.json
file for each evaluation split (val and test, for both MC and DA) with the format: { question_id (str) : prediction (str) }
. Be sure this includes a prediction for every question in the evaluation set. You won't be able to run evaluation locally on test set predictions, since the ground-truth answers are hidden.
import os
import json
import aokvqa_utils
multiple_choice = True # Set False for DA
predictions_file = './path/to/predictions.json'
predictions = json.load(open(predictions_file, 'r'))
aokvqa_dir = os.getenv('AOKVQA_DIR')
split = 'val'
eval_dataset = aokvqa_utils.load_aokvqa(aokvqa_dir, split)
acc = aokvqa_utils.eval_aokvqa(eval_dataset, predictions, multiple_choice=multiple_choice)
print(acc) # float
To compute metrics over a batch of predictions files (e.g. ./predictions/{model-name}_val-da.json
), you can instead run python evaluate_predictions.py --aokvqa-dir ${AOKVQA_DIR} --split val --preds "./predictions/*_val-da.json"
. Add the --multiple-choice
flag to run MC evaluation over (e.g. *_val-mc.json
) files that have instead been generated for the multiple-choice setting.
You can submit predictions from your model to our leaderboard! Simply produce predictions files for each split and setting and submit here. Remember that your model is not allowed to compare "choices" when predicting for the DA setting.
We provide all code and pretrained models necessary to replicate our experiments for Large-Scale Pretrained Models (sec. 5.2) and Rationale Generation (sec. 5.3).
export FEATURES_DIR=./features/
mkdir -p ${FEATURES_DIR}
You can compute CLIP features for our vocabulary and dataset. These are most commonly used by our other experiments.
python data_scripts/encode_vocab_clip.py --vocab ${AOKVQA_DIR}/large_vocab_train.csv --model-type ViT-B/32 --out ${FEATURES_DIR}/clip-ViT-B-32_large_vocab.pt
for split in train val test; do
python data_scripts/extract_clip_features.py --aokvqa-dir ${AOKVQA_DIR} --coco-dir ${COCO_DIR} --split ${split} --model-type ViT-B/32 --out ${FEATURES_DIR}/clip-ViT-B-32_${split}.pt
done
For training ClipCap with a transformer mapping network
If you want to train our ClipCap models with the transformer mapping network (instead of an MLP, like we do), you'll also need to run extract_clip_features.py
with --model-type RN50x4
.
For ResNet and BERT input features
Our ResNet and BERT classification experiments require these respective features instead of CLIP. To generate these, please run the following commands:
# ResNet
for split in train val test; do
python data_scripts/extract_resnet_features.py --aokvqa-dir ${AOKVQA_DIR} --coco-dir ${COCO_DIR} --split ${split} --out ${FEATURES_DIR}/resnet_${split}.pt
done
# BERT
for split in train val test; do
python data_scripts/extract_bert_features.py --aokvqa-dir ${AOKVQA_DIR} --split ${split} --out ${FEATURES_DIR}/bert_${split}.pt
done
export LOG_DIR=./logs/
export PREDS_DIR=./predictions/
mkdir -p ${LOG_DIR} ${PREDS_DIR}
Below, we follow this prediction file naming scheme: {model-name}_{split}-{setting}.json
(e.g. random-weighted_val-mc.json
or random-weighted_test-da.json
). As examples, we produce predictions on the validation set below.
# These scripts accept the same arguments.
# heuristics/random_unweighted.py
# heuristics/random_weighted.py
# heuristics/most_common_answer.py
python heuristics/random_unweighted.py --aokvqa-dir ${AOKVQA_DIR} --split val --mc --out ${PREDS_DIR}/random-unweighted_val-mc.json
# Exclude --mc for the direct answer setting
We use the following training/prediction scripts for the classifier, zero-shot, and contrastive experiments in Table 3.
## Training
python transfer_experiments/train.py --aokvqa-dir ${AOKVQA_DIR} --vocab ${AOKVQA_DIR}/large_vocab_train.csv --log-dir ${LOG_DIR}
--backbone clip --clip-model-type ViT-B/32 --train-features ${FEATURES_DIR}/clip-ViT-B-32_train.pt --val-features ${FEATURES_DIR}/clip-ViT-B-32_val.pt
--inputs question # OR --inputs image # OR --inputs question image
# OR
--backbone resnet --train-features ${FEATURES_DIR}/resnet_train.pt --val-features ${FEATURES_DIR}/resnet_val.pt --inputs image
# OR
--backbone bert --train-features ${FEATURES_DIR}/bert_train.pt --val-features ${FEATURES_DIR}/bert_val.pt --inputs question
--objective classifier
# OR
--objective contrastive --vocab-features ${FEATURE_DIR}/clip-ViT-B-32_large_vocab.pt
You can make predictions for CLIP zero-shot or from a classifier/contrastive checkpoint trained above.
## Predicting
python transfer_experiments/predict.py --aokvqa-dir ${AOKVQA_DIR} --out ${PREDS_DIR}/clip-classifier_val-mc.json
--split val # or test
--features ${FEATURE_DIR}/clip-ViT-B-32_val.pt # adjust for backbone and eval split
--ckpt path/to/model.ckpt
# OR
--zero-shot --clip-model-type ViT-B/32
--inputs question # OR --inputs image # OR --inputs question image
--mc # Multiple-choice. Exclude for direct-answer.
# IF classifier OR direct-answer
--vocab ${AOKVQA_DIR}/large_vocab_train.csv
# IF contrastive/zero-shot AND direct-answer
--vocab-features ${FEATURES_DIR}/clip-ViT-B-32_large_vocab.pt
To follow our experiments which use GPT-3, you. Please retrieve your organization and API keys and set them in your environment variables.
export OPENAI_ORG=....
export OPENAI_API_KEY=...
For producing predictions for both DA and MC settings, run:
python gpt3/query_gpt3.py --aokvqa-dir ${AOKVQA_DIR} --split val --out ${PREDS_DIR}/gpt3_val-da.json
python remap_predictions.py --aokvqa-dir ${AOKVQA_DIR} --split val --pred ${PREDS_DIR}/gpt3_val-da.json --out ${PREDS_DIR}/gpt3_val-mc.json
We have modified the ClipCap codebase for our task of VQA. In particular, we have forked the original repo via our ClipCap branch and made additional changes. This is already part of the codebase you cloned, assuming you included --recurse-submodules
as directed above.
Downloading pretrained models
export PT_MODEL_DIR=./pretrained_models/
mkdir -p ${PT_MODEL_DIR}
# We use this model: MLP mapping network and finetuned GPT-2 (pretrained on COCO)
gdown 1IdaBtMSvtyzF0ByVaBHtvM0JYSXRExRX -O ${PT_MODEL_DIR}/clipcap_coco_weights.pt
# Finetuning on our dataset
python ClipCap/train.py --log-dir ${LOG_DIR}/clipcap --aokvqa-dir ${AOKVQA_DIR} --train-features ${FEATURES_DIR}/clip-ViT-B-32_train.pt --val-features ${FEATURES_DIR}/clip-ViT-B-32_val.pt --pretrained-model ${PT_MODEL_DIR}/clipcap_coco_weights.pt --generation-target answer --mapping mlp --finetune-gpt
# Predicting (e.g. for epoch 3)
python ClipCap/predict.py --log-dir ${LOG_DIR}/clipcap --epoch 3 --aokvqa-dir ${AOKVQA_DIR} --split val --eval-features ${FEATURES_DIR}/clip-ViT-B-32_val.pt --out ${PREDS_DIR}/clipcap_val-da.json
For the multiple-choice setting, adjust the following arguments:
# ClipCap/train.py: --log-dir ${LOG_DIR}/clipcap-mc --prompt-with-choices
# ClipCap/predict.py: --log-dir ${LOG_DIR}/clipcap-mc --map-to-choices --out ${PREDS_DIR}/clipcap_val-mc.json
For training with a Transformer mapping network
# Grab the Transformer ClipCap weights (pretrained on COCO)
gdown 1GYPToCqFREwi285wPLhuVExlz7DDUDfJ -O ${PT_MODEL_DIR}/clipcap_transformer_weights.pt
# ClipCap/train.py: --train-features ${FEATURES_DIR}/clip-RN50x4_train.pt --pretrained-model ${PT_MODEL_DIR}/clipcap_transformer_weights.pt --mapping transformer
# ClipCap/predict.py: --eval-features ${FEATURES_DIR}/clip-RN50x4_val.pt
To generate rationales, we repeat the above ClipCap training and predictions, with some modifications. We only train one model (even between DA and MC settings).
mkdir -p ${LOG_DIR}/gpt3-inputs
# ClipCap/train.py: --log-dir ${LOG_DIR}/clipcap-rationale --generation-target rationale
# Be sure to exclude --prompt-with-choices
# ClipCap/predict.py: --log-dir ${LOG_DIR}/clipcap-rationale --beam-search --out ${LOG_DIR}/gpt3-inputs/clipcap-rationales_val.json
# Be sure to exclude --map-to-choices
Prompting GPT-3 with rationales
First see Querying GPT-3 section above.
We should generate ground-truth rationale files:
for split in train val; do
python gpt3/rationale_inputs.py --aokvqa-dir ${AOKVQA_DIR} --split ${split} --out logs/gpt3-inputs/rationales_${split}.json
done
You can prompt GPT-3 as described above, but with the following modified arguments:
# For prompting with ground-truth rationales:
# gpt3/query_gpt3.py: --train-context ${LOG_DIR}/gpt3-inputs/rationales_train.json --context ${LOG_DIR}/gpt3-inputs/rationales_val.json --out ${PREDS_DIR}/gpt3-rationales_val-da.json
# remap_predictions.py: --pred ${PREDS_DIR}/gpt3-rationales_val-da.json --out ${PREDS_DIR}/gpt3-rationales_val-mc.json
# For prompting with generated rationales:
# gpt3/query_gpt3.py: --train-context ${LOG_DIR}/gpt3-inputs/rationales_train.json --context ${LOG_DIR}/gpt3-inputs/clipcap-rationales_val.json --out ${PREDS_DIR}/gpt3-clipcap-rationales_val-da.json
# remap_predictions.py: --pred ${PREDS_DIR}/gpt3-clipcap-rationales_val-da.json --out ${PREDS_DIR}/gpt3-clipcap-rationales_val-mc.json
Generating and prompting with captions
Please read everything else (above) in this section first.
We can generate COCO captions with the original ClipCap weights.
python ClipCap/predict_clipcap.py --ckpt ${PT_MODEL_DIR}/clipcap_coco_weights.pt --mapping mlp --aokvqa-dir ${AOKVQA_DIR} --split val --eval-features ${FEATURES_DIR}/clip-ViT-B-32_val.pt --beam-search --out logs/gpt3-inputs/clipcap-captions_val.json
We should also generate ground-truth captions (for train and val).
for split in train val; do
python gpt3/caption_inputs.py --aokvqa-dir ${AOKVQA_DIR} --coco-dir ${COCO_DIR} --split ${split} --out ${LOG_DIR}/gpt3-inputs/captions_${split}.json
done
Query GPT-3 with original arguments and the following modifications, and produce predictions.
# For prompting with ground-truth captions:
# gpt3/query_gpt3.py: --train-context ${LOG_DIR}/gpt3-inputs/captions_train.json --context ${LOG_DIR}/gpt3-inputs/captions_val.json --out ${PREDS_DIR}/gpt3-captions_val-da.json
# remap_predictions.py: --pred ${PREDS_DIR}/gpt3-captions_val-da.json --out ${PREDS_DIR}/gpt3-captions_val-mc.json
# For prompting with generated captions:
# gpt3/query_gpt3.py: --train-context ${LOG_DIR}/gpt3-inputs/captions_train.json --context ${LOG_DIR}/gpt3-inputs/clipcap-captions_val.json --out ${PREDS_DIR}/gpt3-clipcap-captions_val-da.json
# remap_predictions.py: --pred ${PREDS_DIR}/gpt3-clipcap-captions_val-da.json --out ${PREDS_DIR}/gpt3-clipcap-captions_val-mc.json