forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
multinverses.jl
179 lines (159 loc) · 6.29 KB
/
multinverses.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# This file is a part of Julia. License is MIT: https://julialang.org/license
module MultiplicativeInverses
import Base: div, divrem, rem, unsigned
using Base: IndexLinear, IndexCartesian, tail
export multiplicativeinverse
unsigned(::Type{Bool}) = UInt
unsigned(::Type{Int8}) = UInt8
unsigned(::Type{Int16}) = UInt16
unsigned(::Type{Int32}) = UInt32
unsigned(::Type{Int64}) = UInt64
unsigned(::Type{Int128}) = UInt128
unsigned(::Type{T}) where {T<:Unsigned} = T
abstract type MultiplicativeInverse{T} <: Number end
# Computes integer division by a constant using multiply, add, and bitshift.
# The idea here is to compute floor(n/d) as floor(m*n/2^p) and then
# implement division by 2^p as a right bitshift. The trick is finding
# m (the "magic number") and p. Roughly speaking, one can think of this as
# floor(n/d) = floor((n/2^p) * (2^p/d))
# so that m is effectively 2^p/d.
#
# A few examples are illustrative:
# Division of Int32 by 3:
# floor((2^32+2)/3 * n/2^32) = floor(n/3 + 2n/(3*2^32))
# The correction term, 2n/(3*2^32), is strictly less than 1/3 for any
# non-negative n::Int32, so this divides any non-negative Int32 by 3.
# (When n < 0, we add 1, and one can show that this computes
# ceil(n/d) = -floor(abs(n)/d).)
#
# Division of Int32 by 5 uses a magic number (2^33+3)/5 and then
# right-shifts by 33 rather than 32. Consequently, the size of the
# shift depends on the specific denominator.
#
# Division of Int32 by 7 would be problematic, because a viable magic
# number of (2^34+5)/7 is too big to represent as an Int32 (the
# unsigned representation needs 32 bits). We can exploit wrap-around
# and use (2^34+5)/7 - 2^32 (an Int32 < 0), and then correct the
# 64-bit product with an add (the `addmul` field below).
#
# Further details can be found in Hacker's Delight, Chapter 10.
struct SignedMultiplicativeInverse{T<:Signed} <: MultiplicativeInverse{T}
divisor::T
multiplier::T
addmul::Int8
shift::UInt8
function SignedMultiplicativeInverse{T}(d::T) where T<:Signed
d == 0 && throw(ArgumentError("cannot compute magic for d == $d"))
signedmin = unsigned(typemin(T))
UT = unsigned(T)
# Algorithm from Hacker's Delight, section 10-4
ad = unsigned(abs(d))
t = signedmin + signbit(d)
anc = t - one(UT) - rem(t, ad) # absolute value of nc
p = sizeof(d)*8 - 1
q1, r1 = divrem(signedmin, anc)
q2, r2 = divrem(signedmin, ad)
while true
p += 1 # loop until we find a satisfactory p
# update q1, r1 = divrem(2^p, abs(nc))
q1 = q1<<1
r1 = r1<<1
if r1 >= anc # must be unsigned comparison
q1 += one(UT)
r1 -= anc
end
# update q2, r2 = divrem(2^p, abs(d))
q2 = q2<<1
r2 = r2<<1
if r2 >= ad
q2 += one(UT)
r2 -= ad
end
delta = ad - r2
(q1 < delta || (q1 == delta && r1 == 0)) || break
end
m = flipsign((q2 + one(UT)) % T, d) # resulting magic number
s = p - sizeof(d)*8 # resulting shift
new(d, m, d > 0 && m < 0 ? Int8(1) : d < 0 && m > 0 ? Int8(-1) : Int8(0), UInt8(s))
end
end
SignedMultiplicativeInverse(x::Signed) = SignedMultiplicativeInverse{typeof(x)}(x)
struct UnsignedMultiplicativeInverse{T<:Unsigned} <: MultiplicativeInverse{T}
divisor::T
multiplier::T
add::Bool
shift::UInt8
function UnsignedMultiplicativeInverse{T}(d::T) where T<:Unsigned
d == 0 && throw(ArgumentError("cannot compute magic for d == $d"))
add = false
signedmin = one(d) << (sizeof(d)*8-1)
signedmax = signedmin - one(T)
allones = (zero(d) - 1) % T
nc = allones - rem(convert(T, allones - d), d)
p = 8*sizeof(d) - 1
q1, r1 = divrem(signedmin, nc)
q2, r2 = divrem(signedmax, d)
while true
p += 1
if r1 >= convert(T, nc - r1)
q1 = q1 + q1 + one(T)
r1 = r1 + r1 - nc
else
q1 = q1 + q1
r1 = r1 + r1
end
if convert(T, r2 + one(T)) >= convert(T, d - r2)
add |= q2 >= signedmax
q2 = q2 + q2 + one(T)
r2 = r2 + r2 + one(T) - d
else
add |= q2 >= signedmin
q2 = q2 + q2
r2 = r2 + r2 + one(T)
end
delta = d - one(T) - r2
(p < sizeof(d)*16 && (q1 < delta || (q1 == delta && r1 == 0))) || break
end
m = q2 + one(T) # resulting magic number
s = p - sizeof(d)*8 - add # resulting shift
new(d, m, add, s % UInt8)
end
end
UnsignedMultiplicativeInverse(x::Unsigned) = UnsignedMultiplicativeInverse{typeof(x)}(x)
# Returns the higher half of the product a*b
function _mul_high(a::T, b::T) where {T<:Union{Signed, Unsigned}}
((widen(a)*b) >>> (sizeof(a)*8)) % T
end
function _mul_high(a::UInt128, b::UInt128)
shift = sizeof(a)*4
mask = typemax(UInt128) >> shift
a1, a2 = a >>> shift, a & mask
b1, b2 = b >>> shift, b & mask
a1b1, a1b2, a2b1, a2b2 = a1*b1, a1*b2, a2*b1, a2*b2
carry = ((a1b2 & mask) + (a2b1 & mask) + (a2b2 >>> shift)) >>> shift
a1b1 + (a1b2 >>> shift) + (a2b1 >>> shift) + carry
end
function _mul_high(a::Int128, b::Int128)
shift = sizeof(a)*8 - 1
t1, t2 = (a >> shift) & b % UInt128, (b >> shift) & a % UInt128
(_mul_high(a % UInt128, b % UInt128) - t1 - t2) % Int128
end
function div(a::T, b::SignedMultiplicativeInverse{T}) where T
x = _mul_high(a, b.multiplier)
x += (a*b.addmul) % T
ifelse(abs(b.divisor) == 1, a*b.divisor, (signbit(x) + (x >> b.shift)) % T)
end
function div(a::T, b::UnsignedMultiplicativeInverse{T}) where T
x = _mul_high(a, b.multiplier)
x = ifelse(b.add, convert(T, convert(T, (convert(T, a - x) >>> 1)) + x), x)
ifelse(b.divisor == 1, a, x >>> b.shift)
end
rem(a::T, b::MultiplicativeInverse{T}) where {T} =
a - div(a, b)*b.divisor
function divrem(a::T, b::MultiplicativeInverse{T}) where T
d = div(a, b)
(d, a - d*b.divisor)
end
multiplicativeinverse(x::Signed) = SignedMultiplicativeInverse(x)
multiplicativeinverse(x::Unsigned) = UnsignedMultiplicativeInverse(x)
end