forked from OSGeo/grass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patht.rast.series.py
executable file
·219 lines (182 loc) · 6.2 KB
/
t.rast.series.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#!/usr/bin/env python3
############################################################################
#
# MODULE: t.rast.series
# AUTHOR(S): Soeren Gebbert
#
# PURPOSE: Perform different aggregation algorithms from r.series on all or a
# selected subset of raster maps in a space time raster dataset
# COPYRIGHT: (C) 2011-2017 by the GRASS Development Team
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
#############################################################################
# %module
# % description: Performs different aggregation algorithms from r.series on all or a subset of raster maps in a space time raster dataset.
# % keyword: temporal
# % keyword: aggregation
# % keyword: series
# % keyword: raster
# % keyword: time
# %end
# %option G_OPT_STRDS_INPUT
# %end
# %option
# % key: method
# % type: string
# % description: Aggregate operation to be performed on the raster maps
# % required: yes
# % multiple: yes
# % options: average,count,median,mode,minimum,min_raster,maximum,max_raster,stddev,range,sum,variance,diversity,slope,offset,detcoeff,quart1,quart3,perc90,quantile,skewness,kurtosis
# % answer: average
# %end
# %option
# % key: quantile
# % type: double
# % description: Quantile to calculate for method=quantile
# % required: no
# % multiple: yes
# % options: 0.0-1.0
# %end
# %option
# % key: order
# % type: string
# % description: Sort the maps by category
# % required: no
# % multiple: yes
# % options: id, name, creator, mapset, creation_time, modification_time, start_time, end_time, north, south, west, east, min, max
# % answer: start_time
# %end
# %option G_OPT_M_NPROCS
# %end
# %option G_OPT_MEMORYMB
# %end
# %option G_OPT_T_WHERE
# %end
# %option G_OPT_R_OUTPUTS
# %end
# %option
# % key: file_limit
# % type: integer
# % description: The maximum number of open files allowed for each r.series process
# % required: no
# % answer: 1000
# %end
# %flag
# % key: t
# % description: Do not assign the space time raster dataset start and end time to the output map
# %end
# %flag
# % key: n
# % description: Propagate NULLs
# %end
import grass.script as grass
from grass.exceptions import CalledModuleError
############################################################################
def main():
# lazy imports
import grass.temporal as tgis
# Get the options
input = options["input"]
output = options["output"]
method = options["method"]
quantile = options["quantile"]
order = options["order"]
memory = options["memory"]
nprocs = options["nprocs"]
where = options["where"]
max_files_open = int(options["file_limit"])
add_time = flags["t"]
nulls = flags["n"]
# Check if number of methods and output maps matches
if "quantile" in method:
len_method = len(method.split(",")) - 1
else:
len_method = len(method.split(","))
if (len(list(filter(None, quantile.split(",")))) + len_method) != len(
output.split(",")
):
grass.fatal(_("Number requested methods and output maps do not match."))
# Make sure the temporal database exists
tgis.init()
sp = tgis.open_old_stds(input, "strds")
rows = sp.get_registered_maps("id", where, order, None)
if rows:
# Create the r.series input file
filename = grass.tempfile(True)
file = open(filename, "w")
for row in rows:
string = "%s\n" % (row["id"])
file.write(string)
file.close()
flag = ""
if len(rows) > max_files_open:
grass.warning(
_(
"Processing over {} maps: activating -z flag of r.series which slows down processing.".format(
max_files_open
)
)
)
flag += "z"
if nulls:
flag += "n"
try:
grass.run_command(
"r.series",
flags=flag,
file=filename,
output=output,
overwrite=grass.overwrite(),
method=method,
quantile=quantile,
memory=memory,
nprocs=nprocs,
)
except CalledModuleError:
grass.fatal(_("%s failed. Check above error messages.") % "r.series")
if not add_time:
# We need to set the temporal extent from the subset of selected maps
maps = sp.get_registered_maps_as_objects(
where=where, order=order, dbif=None
)
first_map = maps[0]
last_map = maps[-1]
start_a, end_a = first_map.get_temporal_extent_as_tuple()
start_b, end_b = last_map.get_temporal_extent_as_tuple()
if end_b is None:
end_b = start_b
if first_map.is_time_absolute():
extent = tgis.AbsoluteTemporalExtent(start_time=start_a, end_time=end_b)
else:
extent = tgis.RelativeTemporalExtent(
start_time=start_a,
end_time=end_b,
unit=first_map.get_relative_time_unit(),
)
for out_map in output.split(","):
# Create the time range for the output map
if out_map.find("@") >= 0:
id = out_map
else:
mapset = grass.gisenv()["MAPSET"]
id = out_map + "@" + mapset
map = sp.get_new_map_instance(id)
map.load()
map.set_temporal_extent(extent=extent)
# Register the map in the temporal database
if map.is_in_db():
map.update_all()
else:
map.insert()
if __name__ == "__main__":
options, flags = grass.parser()
main()