forked from TracyMacc/multimodal-emotion-recognition-2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
transforms.py
160 lines (129 loc) · 4.59 KB
/
transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
'''
Parts of this code are based on https://github.com/okankop/Efficient-3DCNNs
'''
import random
import numbers
import numpy as np
import torch
from PIL import Image
try:
import accimage
except ImportError:
accimage = None
class Compose(object):
"""Composes several transforms together.
Args:
transforms (list of ``Transform`` objects): list of transforms to compose.
Example:
>>> transforms.Compose([
>>> transforms.CenterCrop(10),
>>> transforms.ToTensor(),
>>> ])
"""
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, img):
for t in self.transforms:
img = t(img)
return img
def randomize_parameters(self):
for t in self.transforms:
t.randomize_parameters()
class ToTensor(object):
"""Convert a ``PIL.Image`` or ``numpy.ndarray`` to tensor.
Converts a PIL.Image or numpy.ndarray (H x W x C) in the range
[0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0].
"""
def __init__(self, norm_value=255):
self.norm_value = norm_value
def __call__(self, pic):
"""
Args:
pic (PIL.Image or numpy.ndarray): Image to be converted to tensor.
Returns:
Tensor: Converted image.
"""
if isinstance(pic, np.ndarray):
# handle numpy array
img = torch.from_numpy(pic.transpose((2, 0, 1)))
# backward compatibility
return img.float().div(self.norm_value)
if accimage is not None and isinstance(pic, accimage.Image):
nppic = np.zeros(
[pic.channels, pic.height, pic.width], dtype=np.float32)
pic.copyto(nppic)
return torch.from_numpy(nppic)
# handle PIL Image
if pic.mode == 'I':
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
elif pic.mode == 'I;16':
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
else:
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
if pic.mode == 'YCbCr':
nchannel = 3
elif pic.mode == 'I;16':
nchannel = 1
else:
nchannel = len(pic.mode)
img = img.view(pic.size[1], pic.size[0], nchannel)
# put it from HWC to CHW format
# yikes, this transpose takes 80% of the loading time/CPU
img = img.transpose(0, 1).transpose(0, 2).contiguous()
#print(img.size(), img.float().div(self.norm_value))
if isinstance(img, torch.ByteTensor):
return img.float().div(self.norm_value)
else:
return img
def randomize_parameters(self):
pass
class CenterCrop(object):
"""Crops the given PIL.Image at the center.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
"""
def __init__(self, size):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
def __call__(self, img):
"""
Args:
img (PIL.Image): Image to be cropped.
Returns:
PIL.Image: Cropped image.
"""
w, h = img.size
th, tw = self.size
x1 = int(round((w - tw) / 2.))
y1 = int(round((h - th) / 2.))
return img.crop((x1, y1, x1 + tw, y1 + th))
def randomize_parameters(self):
pass
class RandomHorizontalFlip(object):
"""Horizontally flip the given PIL.Image randomly with a probability of 0.5."""
def __call__(self, img):
"""
Args:
img (PIL.Image): Image to be flipped.
Returns:
PIL.Image: Randomly flipped image.
"""
if self.p < 0.5:
return img.transpose(Image.FLIP_LEFT_RIGHT)
return img
def randomize_parameters(self):
self.p = random.random()
class RandomRotate(object):
def __init__(self):
self.interpolation = Image.BILINEAR
def __call__(self, img):
im_size = img.size
ret_img = img.rotate(self.rotate_angle, resample=self.interpolation)
return ret_img
def randomize_parameters(self):
self.rotate_angle = random.randint(-10, 10)