forked from nipy/nipype
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfmri_fsl.py
executable file
·640 lines (495 loc) · 21.3 KB
/
fmri_fsl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
#!/usr/bin/env python
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
"""
=========
fMRI: FSL
=========
A workflow that uses fsl to perform a first level analysis on the nipype
tutorial data set::
python fmri_fsl.py
First tell python where to find the appropriate functions.
"""
import os # system functions
import nipype.interfaces.io as nio # Data i/o
import nipype.interfaces.fsl as fsl # fsl
import nipype.interfaces.utility as util # utility
import nipype.pipeline.engine as pe # pypeline engine
import nipype.algorithms.modelgen as model # model generation
import nipype.algorithms.rapidart as ra # artifact detection
"""
Preliminaries
-------------
Setup any package specific configuration. The output file format for FSL
routines is being set to compressed NIFTI.
"""
fsl.FSLCommand.set_default_output_type('NIFTI_GZ')
"""
Setting up workflows
--------------------
In this tutorial we will be setting up a hierarchical workflow for fsl
analysis. This will demonstrate how pre-defined workflows can be setup and
shared across users, projects and labs.
Setup preprocessing workflow
----------------------------
This is a generic fsl feat preprocessing workflow encompassing skull stripping,
motion correction and smoothing operations.
"""
preproc = pe.Workflow(name='preproc')
"""
Set up a node to define all inputs required for the preprocessing workflow
"""
inputnode = pe.Node(interface=util.IdentityInterface(fields=['func',
'struct',]),
name='inputspec')
"""
Convert functional images to float representation. Since there can be more than
one functional run we use a MapNode to convert each run.
"""
img2float = pe.MapNode(interface=fsl.ImageMaths(out_data_type='float',
op_string = '',
suffix='_dtype'),
iterfield=['in_file'],
name='img2float')
preproc.connect(inputnode, 'func', img2float, 'in_file')
"""
Extract the middle volume of the first run as the reference
"""
extract_ref = pe.Node(interface=fsl.ExtractROI(t_size=1),
name = 'extractref')
"""
Define a function to pick the first file from a list of files
"""
def pickfirst(files):
if isinstance(files, list):
return files[0]
else:
return files
preproc.connect(img2float, ('out_file', pickfirst), extract_ref, 'in_file')
"""
Define a function to return the 1 based index of the middle volume
"""
def getmiddlevolume(func):
from nibabel import load
funcfile = func
if isinstance(func, list):
funcfile = func[0]
_,_,_,timepoints = load(funcfile).get_shape()
return (timepoints/2)-1
preproc.connect(inputnode, ('func', getmiddlevolume), extract_ref, 't_min')
"""
Realign the functional runs to the middle volume of the first run
"""
motion_correct = pe.MapNode(interface=fsl.MCFLIRT(save_mats = True,
save_plots = True),
name='realign',
iterfield = ['in_file'])
preproc.connect(img2float, 'out_file', motion_correct, 'in_file')
preproc.connect(extract_ref, 'roi_file', motion_correct, 'ref_file')
"""
Plot the estimated motion parameters
"""
plot_motion = pe.MapNode(interface=fsl.PlotMotionParams(in_source='fsl'),
name='plot_motion',
iterfield=['in_file'])
plot_motion.iterables = ('plot_type', ['rotations', 'translations'])
preproc.connect(motion_correct, 'par_file', plot_motion, 'in_file')
"""
Extract the mean volume of the first functional run
"""
meanfunc = pe.Node(interface=fsl.ImageMaths(op_string = '-Tmean',
suffix='_mean'),
name='meanfunc')
preproc.connect(motion_correct, ('out_file', pickfirst), meanfunc, 'in_file')
"""
Strip the skull from the mean functional to generate a mask
"""
meanfuncmask = pe.Node(interface=fsl.BET(mask = True,
no_output=True,
frac = 0.3),
name = 'meanfuncmask')
preproc.connect(meanfunc, 'out_file', meanfuncmask, 'in_file')
"""
Mask the functional runs with the extracted mask
"""
maskfunc = pe.MapNode(interface=fsl.ImageMaths(suffix='_bet',
op_string='-mas'),
iterfield=['in_file'],
name = 'maskfunc')
preproc.connect(motion_correct, 'out_file', maskfunc, 'in_file')
preproc.connect(meanfuncmask, 'mask_file', maskfunc, 'in_file2')
"""
Determine the 2nd and 98th percentile intensities of each functional run
"""
getthresh = pe.MapNode(interface=fsl.ImageStats(op_string='-p 2 -p 98'),
iterfield = ['in_file'],
name='getthreshold')
preproc.connect(maskfunc, 'out_file', getthresh, 'in_file')
"""
Threshold the first run of the functional data at 10% of the 98th percentile
"""
threshold = pe.Node(interface=fsl.ImageMaths(out_data_type='char',
suffix='_thresh'),
name='threshold')
preproc.connect(maskfunc, ('out_file', pickfirst), threshold, 'in_file')
"""
Define a function to get 10% of the intensity
"""
def getthreshop(thresh):
return '-thr %.10f -Tmin -bin'%(0.1*thresh[0][1])
preproc.connect(getthresh, ('out_stat', getthreshop), threshold, 'op_string')
"""
Determine the median value of the functional runs using the mask
"""
medianval = pe.MapNode(interface=fsl.ImageStats(op_string='-k %s -p 50'),
iterfield = ['in_file'],
name='medianval')
preproc.connect(motion_correct, 'out_file', medianval, 'in_file')
preproc.connect(threshold, 'out_file', medianval, 'mask_file')
"""
Dilate the mask
"""
dilatemask = pe.Node(interface=fsl.ImageMaths(suffix='_dil',
op_string='-dilF'),
name='dilatemask')
preproc.connect(threshold, 'out_file', dilatemask, 'in_file')
"""
Mask the motion corrected functional runs with the dilated mask
"""
maskfunc2 = pe.MapNode(interface=fsl.ImageMaths(suffix='_mask',
op_string='-mas'),
iterfield=['in_file'],
name='maskfunc2')
preproc.connect(motion_correct, 'out_file', maskfunc2, 'in_file')
preproc.connect(dilatemask, 'out_file', maskfunc2, 'in_file2')
"""
Determine the mean image from each functional run
"""
meanfunc2 = pe.MapNode(interface=fsl.ImageMaths(op_string='-Tmean',
suffix='_mean'),
iterfield=['in_file'],
name='meanfunc2')
preproc.connect(maskfunc2, 'out_file', meanfunc2, 'in_file')
"""
Merge the median values with the mean functional images into a coupled list
"""
mergenode = pe.Node(interface=util.Merge(2, axis='hstack'),
name='merge')
preproc.connect(meanfunc2,'out_file', mergenode, 'in1')
preproc.connect(medianval,'out_stat', mergenode, 'in2')
"""
Smooth each run using SUSAN with the brightness threshold set to 75% of the
median value for each run and a mask constituting the mean functional
"""
smooth = pe.MapNode(interface=fsl.SUSAN(),
iterfield=['in_file', 'brightness_threshold','usans'],
name='smooth')
"""
Define a function to get the brightness threshold for SUSAN
"""
def getbtthresh(medianvals):
return [0.75*val for val in medianvals]
def getusans(x):
return [[tuple([val[0],0.75*val[1]])] for val in x]
preproc.connect(maskfunc2, 'out_file', smooth, 'in_file')
preproc.connect(medianval, ('out_stat', getbtthresh), smooth, 'brightness_threshold')
preproc.connect(mergenode, ('out', getusans), smooth, 'usans')
"""
Mask the smoothed data with the dilated mask
"""
maskfunc3 = pe.MapNode(interface=fsl.ImageMaths(suffix='_mask',
op_string='-mas'),
iterfield=['in_file'],
name='maskfunc3')
preproc.connect(smooth, 'smoothed_file', maskfunc3, 'in_file')
preproc.connect(dilatemask, 'out_file', maskfunc3, 'in_file2')
"""
Scale each volume of the run so that the median value of the run is set to 10000
"""
intnorm = pe.MapNode(interface=fsl.ImageMaths(suffix='_intnorm'),
iterfield=['in_file','op_string'],
name='intnorm')
preproc.connect(maskfunc3, 'out_file', intnorm, 'in_file')
"""
Define a function to get the scaling factor for intensity normalization
"""
def getinormscale(medianvals):
return ['-mul %.10f'%(10000./val) for val in medianvals]
preproc.connect(medianval, ('out_stat', getinormscale), intnorm, 'op_string')
"""
Perform temporal highpass filtering on the data
"""
highpass = pe.MapNode(interface=fsl.ImageMaths(suffix='_tempfilt'),
iterfield=['in_file'],
name='highpass')
preproc.connect(intnorm, 'out_file', highpass, 'in_file')
"""
Generate a mean functional image from the first run
"""
meanfunc3 = pe.MapNode(interface=fsl.ImageMaths(op_string='-Tmean',
suffix='_mean'),
iterfield=['in_file'],
name='meanfunc3')
preproc.connect(highpass, ('out_file', pickfirst), meanfunc3, 'in_file')
"""
Strip the structural image and coregister the mean functional image to the
structural image
"""
nosestrip = pe.Node(interface=fsl.BET(frac=0.3),
name = 'nosestrip')
skullstrip = pe.Node(interface=fsl.BET(mask = True),
name = 'stripstruct')
coregister = pe.Node(interface=fsl.FLIRT(dof=6),
name = 'coregister')
"""
Use :class:`nipype.algorithms.rapidart` to determine which of the
images in the functional series are outliers based on deviations in
intensity and/or movement.
"""
art = pe.MapNode(interface=ra.ArtifactDetect(use_differences = [True, False],
use_norm = True,
norm_threshold = 1,
zintensity_threshold = 3,
parameter_source = 'FSL',
mask_type = 'file'),
iterfield=['realigned_files', 'realignment_parameters'],
name="art")
preproc.connect([(inputnode, nosestrip,[('struct','in_file')]),
(nosestrip, skullstrip, [('out_file','in_file')]),
(skullstrip, coregister,[('out_file','in_file')]),
(meanfunc2, coregister,[(('out_file',pickfirst),'reference')]),
(motion_correct, art, [('par_file','realignment_parameters')]),
(maskfunc2, art, [('out_file','realigned_files')]),
(dilatemask, art, [('out_file', 'mask_file')]),
])
"""
Set up model fitting workflow
-----------------------------
"""
modelfit = pe.Workflow(name='modelfit')
"""
Use :class:`nipype.algorithms.modelgen.SpecifyModel` to generate design information.
"""
modelspec = pe.Node(interface=model.SpecifyModel(), name="modelspec")
"""
Use :class:`nipype.interfaces.fsl.Level1Design` to generate a run specific fsf
file for analysis
"""
level1design = pe.Node(interface=fsl.Level1Design(), name="level1design")
"""
Use :class:`nipype.interfaces.fsl.FEATModel` to generate a run specific mat
file for use by FILMGLS
"""
modelgen = pe.MapNode(interface=fsl.FEATModel(), name='modelgen',
iterfield = ['fsf_file', 'ev_files'])
"""
Use :class:`nipype.interfaces.fsl.FILMGLS` to estimate a model specified by a
mat file and a functional run
"""
modelestimate = pe.MapNode(interface=fsl.FILMGLS(smooth_autocorr=True,
mask_size=5,
threshold=1000),
name='modelestimate',
iterfield = ['design_file','in_file'])
"""
Use :class:`nipype.interfaces.fsl.ContrastMgr` to generate contrast estimates
"""
conestimate = pe.MapNode(interface=fsl.ContrastMgr(), name='conestimate',
iterfield = ['tcon_file','param_estimates',
'sigmasquareds', 'corrections',
'dof_file'])
modelfit.connect([
(modelspec,level1design,[('session_info','session_info')]),
(level1design,modelgen,[('fsf_files', 'fsf_file'),
('ev_files', 'ev_files')]),
(modelgen,modelestimate,[('design_file','design_file')]),
(modelgen,conestimate,[('con_file','tcon_file')]),
(modelestimate,conestimate,[('param_estimates','param_estimates'),
('sigmasquareds', 'sigmasquareds'),
('corrections','corrections'),
('dof_file','dof_file')]),
])
"""
Set up fixed-effects workflow
-----------------------------
"""
fixed_fx = pe.Workflow(name='fixedfx')
"""
Use :class:`nipype.interfaces.fsl.Merge` to merge the copes and
varcopes for each condition
"""
copemerge = pe.MapNode(interface=fsl.Merge(dimension='t'),
iterfield=['in_files'],
name="copemerge")
varcopemerge = pe.MapNode(interface=fsl.Merge(dimension='t'),
iterfield=['in_files'],
name="varcopemerge")
"""
Use :class:`nipype.interfaces.fsl.L2Model` to generate subject and condition
specific level 2 model design files
"""
level2model = pe.Node(interface=fsl.L2Model(),
name='l2model')
"""
Use :class:`nipype.interfaces.fsl.FLAMEO` to estimate a second level model
"""
flameo = pe.MapNode(interface=fsl.FLAMEO(run_mode='fe'), name="flameo",
iterfield=['cope_file','var_cope_file'])
fixed_fx.connect([(copemerge,flameo,[('merged_file','cope_file')]),
(varcopemerge,flameo,[('merged_file','var_cope_file')]),
(level2model,flameo, [('design_mat','design_file'),
('design_con','t_con_file'),
('design_grp','cov_split_file')]),
])
"""
Set up first-level workflow
---------------------------
"""
def sort_copes(files):
numelements = len(files[0])
outfiles = []
for i in range(numelements):
outfiles.insert(i,[])
for j, elements in enumerate(files):
outfiles[i].append(elements[i])
return outfiles
def num_copes(files):
return len(files)
firstlevel = pe.Workflow(name='firstlevel')
firstlevel.connect([(preproc, modelfit, [('highpass.out_file', 'modelspec.functional_runs'),
('art.outlier_files', 'modelspec.outlier_files'),
('highpass.out_file','modelestimate.in_file')]),
(preproc, fixed_fx, [('coregister.out_file', 'flameo.mask_file')]),
(modelfit, fixed_fx,[(('conestimate.copes', sort_copes),'copemerge.in_files'),
(('conestimate.varcopes', sort_copes),'varcopemerge.in_files'),
(('conestimate.copes', num_copes),'l2model.num_copes'),
])
])
"""
Experiment specific components
------------------------------
The nipype tutorial contains data for two subjects. Subject data
is in two subdirectories, ``s1`` and ``s2``. Each subject directory
contains four functional volumes: f3.nii, f5.nii, f7.nii, f10.nii. And
one anatomical volume named struct.nii.
Below we set some variables to inform the ``datasource`` about the
layout of our data. We specify the location of the data, the subject
sub-directories and a dictionary that maps each run to a mnemonic (or
field) for the run type (``struct`` or ``func``). These fields become
the output fields of the ``datasource`` node in the pipeline.
In the example below, run 'f3' is of type 'func' and gets mapped to a
nifti filename through a template '%s.nii'. So 'f3' would become
'f3.nii'.
"""
# Specify the location of the data.
data_dir = os.path.abspath('data')
# Specify the subject directories
subject_list = ['s1'] #, 's3']
# Map field names to individual subject runs.
info = dict(func=[['subject_id', ['f3','f5','f7','f10']]],
struct=[['subject_id','struct']])
infosource = pe.Node(interface=util.IdentityInterface(fields=['subject_id']),
name="infosource")
"""Here we set up iteration over all the subjects. The following line
is a particular example of the flexibility of the system. The
``datasource`` attribute ``iterables`` tells the pipeline engine that
it should repeat the analysis on each of the items in the
``subject_list``. In the current example, the entire first level
preprocessing and estimation will be repeated for each subject
contained in subject_list.
"""
infosource.iterables = ('subject_id', subject_list)
"""
Now we create a :class:`nipype.interfaces.io.DataSource` object and
fill in the information from above about the layout of our data. The
:class:`nipype.pipeline.NodeWrapper` module wraps the interface object
and provides additional housekeeping and pipeline specific
functionality.
"""
datasource = pe.Node(interface=nio.DataGrabber(infields=['subject_id'],
outfields=['func', 'struct']),
name = 'datasource')
datasource.inputs.base_directory = data_dir
datasource.inputs.template = '%s/%s.nii'
datasource.inputs.template_args = info
datasource.inputs.sort_filelist = True
"""
Use the get_node function to retrieve an internal node by name. Then set the
iterables on this node to perform two different extents of smoothing.
"""
smoothnode = firstlevel.get_node('preproc.smooth')
assert(str(smoothnode)=='preproc.smooth')
smoothnode.iterables = ('fwhm', [5.,10.])
hpcutoff = 120
TR = 3.
firstlevel.inputs.preproc.highpass.suffix = '_hpf'
firstlevel.inputs.preproc.highpass.op_string = '-bptf %d -1'%(hpcutoff/TR)
"""
Setup a function that returns subject-specific information about the
experimental paradigm. This is used by the
:class:`nipype.interfaces.spm.SpecifyModel` to create the information necessary
to generate an SPM design matrix. In this tutorial, the same paradigm was used
for every participant. Other examples of this function are available in the
`doc/examples` folder. Note: Python knowledge required here.
"""
def subjectinfo(subject_id):
from nipype.interfaces.base import Bunch
from copy import deepcopy
print "Subject ID: %s\n"%str(subject_id)
output = []
names = ['Task-Odd','Task-Even']
for r in range(4):
onsets = [range(15,240,60),range(45,240,60)]
output.insert(r,
Bunch(conditions=names,
onsets=deepcopy(onsets),
durations=[[15] for s in names],
amplitudes=None,
tmod=None,
pmod=None,
regressor_names=None,
regressors=None))
return output
"""
Setup the contrast structure that needs to be evaluated. This is a list of
lists. The inner list specifies the contrasts and has the following format -
[Name,Stat,[list of condition names],[weights on those conditions]. The
condition names must match the `names` listed in the `subjectinfo` function
described above.
"""
cont1 = ['Task>Baseline','T', ['Task-Odd','Task-Even'],[0.5,0.5]]
cont2 = ['Task-Odd>Task-Even','T', ['Task-Odd','Task-Even'],[1,-1]]
cont3 = ['Task','F', [cont1, cont2]]
contrasts = [cont1,cont2]
firstlevel.inputs.modelfit.modelspec.input_units = 'secs'
firstlevel.inputs.modelfit.modelspec.time_repetition = TR
firstlevel.inputs.modelfit.modelspec.high_pass_filter_cutoff = hpcutoff
firstlevel.inputs.modelfit.level1design.interscan_interval = TR
firstlevel.inputs.modelfit.level1design.bases = {'dgamma':{'derivs': False}}
firstlevel.inputs.modelfit.level1design.contrasts = contrasts
firstlevel.inputs.modelfit.level1design.model_serial_correlations = True
"""
Set up complete workflow
========================
"""
l1pipeline = pe.Workflow(name= "level1")
l1pipeline.base_dir = os.path.abspath('./fsl/workingdir')
l1pipeline.config = {"execution": {"crashdump_dir":os.path.abspath('./fsl/crashdumps')}}
l1pipeline.connect([(infosource, datasource, [('subject_id', 'subject_id')]),
(infosource, firstlevel, [(('subject_id', subjectinfo), 'modelfit.modelspec.subject_info')]),
(datasource, firstlevel, [('struct','preproc.inputspec.struct'),
('func', 'preproc.inputspec.func'),
]),
])
"""
Execute the pipeline
--------------------
The code discussed above sets up all the necessary data structures with
appropriate parameters and the connectivity between the processes, but does not
generate any output. To actually run the analysis on the data the
``nipype.pipeline.engine.Pipeline.Run`` function needs to be called.
"""
if __name__ == '__main__':
l1pipeline.write_graph()
outgraph = l1pipeline.run()
#l1pipeline.run(plugin='MultiProc', plugin_args={'n_procs':2})