-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathfft_filter.c
245 lines (202 loc) · 6.99 KB
/
fft_filter.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#define _GNU_SOURCE 1
#include <assert.h>
#include <stdlib.h>
#include <pthread.h>
#include <memory.h>
#include <complex.h>
#include <math.h>
#include <fftw3.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <unistd.h>
#include "sdr.h"
// Wisdom Defines for the FFTW and FFTWF libraries
// Options for WISDOM_MODE from least to most rigorous are FFTW_ESTIMATE, FFTW_MEASURE, FFTW_PATIENT, and FFTW_EXHAUSTIVE
// The FFTW_ESTIMATE mode seems to make completely incorrect Wisdom plan choices sometimes, and is not recommended.
// Wisdom plans found in an existing Wisdom file will negate the need for time consuming Wisdom plan calculations
// if the Wisdom plans in the file were generated at the same or more rigorous level.
#define WISDOM_MODE FFTW_MEASURE
#define PLANTIME -1 // spend no more than plantime seconds finding the best FFT algorithm. -1 turns the platime cap off.
char wisdom_file_f[] = "sbitx_wisdom_f.wis";
// Modified Bessel function of the 0th kind, used by the Kaiser window
const float i0(float const z){
const float t = (z*z)/4;
float sum = 1 + t;
float term = t;
for(int k=2; k<40; k++){
term *= t/(k*k);
sum += term;
if(term < 1e-12 * sum)
break;
}
return sum;
}
// Modified Bessel function of first kind
const float i1(float const z){
const float t = (z*z)/4;
float term = 1;
float sum = term;
for(int k=1; k<40; k++){
term *= t / (k*(k+1));
sum += term;
if(term < 1e-12 * sum)
break;
}
return 0.5 * z * sum;
}
// Compute an entire Kaiser window
// More efficient than repeatedly calling kaiser(n,M,beta)
int make_kaiser(float * const window,unsigned int const M,float const beta){
assert(window != NULL);
if(window == NULL)
return -1;
// Precompute unchanging partial values
float const numc = M_PI * beta;
float const inv_denom = 1. / i0(numc); // Inverse of denominator
float const pc = 2.0 / (M-1);
// The window is symmetrical, so compute only half of it and mirror
// this won't compute the middle value in an odd-length sequence
for(int n = 0; n < M/2; n++){
float const p = pc * n - 1;
window[M-1-n] = window[n] = i0(numc * sqrtf(1-p*p)) * inv_denom;
}
// If sequence length is odd, middle value is unity
if(M & 1)
window[(M-1)/2] = 1; // The -1 is actually unnecessary
return 0;
}
const static float hann(int const n,int const M){
return 0.5 - 0.5 * cos(2*M_PI*n/(M-1));
}
int make_hann_window(float *window, int max_count){
//apply to the entire fft (MAX_BINS)
for (int i = 0; i < max_count; i++)
window[i] = hann(i, max_count);
}
// Apply Kaiser window to filter frequency response
// "response" is SIMD-aligned array of N complex floats
// Impulse response will be limited to first M samples in the time domain
// Phase is adjusted so "time zero" (cGenter of impulse response) is at M/2
// L and M refer to the decimated output
int window_filter(int const L,int const M,complex float * const response,float const beta){
//total length of the convolving samples
int const N = L + M - 1;
// fftw_plan can overwrite its buffers, so we're forced to make a temp. Ugh.
complex float * const buffer = fftwf_alloc_complex(N);
fftw_set_timelimit(PLANTIME);
fftwf_set_timelimit(PLANTIME);
int e = fftwf_import_wisdom_from_filename(wisdom_file_f);
if (e == 0)
{
printf("Generating Wisdom File...\n");
}
fftwf_plan fwd_filter_plan = fftwf_plan_dft_1d(N,buffer,buffer,FFTW_FORWARD, WISDOM_MODE); // Was FFTW_ESTIMATE N3SB
fftwf_plan rev_filter_plan = fftwf_plan_dft_1d(N,buffer,buffer,FFTW_BACKWARD, WISDOM_MODE); // Was FFTW_ESTIMATE N3SB
fftwf_export_wisdom_to_filename(wisdom_file_f);
// Convert to time domain
memcpy(buffer,response,N*sizeof(*buffer));
fftwf_execute(rev_filter_plan);
fftwf_destroy_plan(rev_filter_plan);
float kaiser_window[M];
make_kaiser(kaiser_window,M,beta);
#if 0
for(int n = 0; n < N; n++)
printf("# time[%d] = %lg, %lg\n", n, crealf(buffer[n]), cimagf(buffer[n]));
#endif
#if 0
for(int m = 0; m < M; m++)
printf("# kaiser[%d] = %g\n",m,kaiser_window[m]);
#endif
// Round trip through FFT/IFFT scales by N
float const gain = 1.;
//shift the buffer to make it causal
for(int n = M - 1; n >= 0; n--)
buffer[n] = buffer[ (n-M/2+N) % N];
#if 0
printf("#Filter time impulse response, shifted\n");
for(int n=0;n< N;n++)
printf("# %d %lg %lg\n",n,crealf(buffer[n]),cimagf(buffer[n]));
#endif
// apply window and gain
for(int n = M - 1; n >= 0; n--)
buffer[n] = buffer[n] * kaiser_window[n] * gain;
#if 0
printf("#Filter time impulse response, windowed and gain adjusted\n");
for(int n=0;n< N;n++)
printf("# %d %lg %lg\n",n,crealf(buffer[n]),cimagf(buffer[n]));
#endif
// Pad with zeroes on right side
memset(buffer+M,0,(N-M)*sizeof(*buffer));
#if 0
printf("# Filter time impulse response zero padded\n");
for(int n=0;n< N;n++)
printf("# %d %lg %lg\n",n,crealf(buffer[n]),cimagf(buffer[n]));
#endif
// Now back to frequency domain
fftwf_execute(fwd_filter_plan);
fftwf_destroy_plan(fwd_filter_plan);
#if 0
printf("#Filter Frequency response amplitude\n");
for(int n=0;n<N;n++){
printf("#%d %.1f db\n",n,power2dB(cnrmf(buffer[n])));
}
printf("\n");
#endif
memcpy(response,buffer,N*sizeof(*response));
#if 0
printf("#Filter windowed FIR frequency coefficients\n");
for(int n=0;n<N;n++){
printf("%d,%.17f,%.17f\n", n, crealf(buffer[n]), cimagf(buffer[n]));
}
#endif
fftwf_free(buffer);
return 0;
}
struct filter *filter_new(int input_length, int impulse_length){
struct filter *f = malloc(sizeof(struct filter));
f->L = input_length;
f->M = impulse_length;
f->N = f->L + f->M - 1;
f->fir_coeff = fftwf_alloc_complex(f->N);
return f;
}
int filter_tune(struct filter *f, float const low,float const high,float const kaiser_beta){
if(isnan(low) || isnan(high) || isnan(kaiser_beta))
return -1;
printf("filter set from %g to %g\n", low, high);
//assert(fabs(low) <= 0.5);
//assert(fabs(high) <= 0.5);
float gain = 1./((float)f->N);
//printf("# Gain is %lf\n", gain);
//printf("# filter elements %d\n", f->N);
for(int n = 0; n < f->N; n++){
float s;
//the first half is +ve frequencies in frequency domain
if(n <= f->N/2)
s = (float)n / f->N;
else //the second half is -ve frequencies, inverted
s = (float)(n-f->N) / f->N;
if(s >= low && s <= high)
f->fir_coeff[n] = gain;
else
f->fir_coeff[n] = 0;
// printf("#1 %d %g %g %g before windowing: %g,%g\n", n, s, low, high, creal(f->fir_coeff[n]), cimag(f->fir_coeff[n]));
}
window_filter(f->L, f->M, f->fir_coeff, kaiser_beta);
return 0;
}
void filter_print(struct filter *f){
printf("#Filter windowed FIR frequency coefficients\n");
for(int n=0;n<f->N;n++){
printf("%d,%.17f,%.17f\n", n, crealf(f->fir_coeff[n]), cimagf(f->fir_coeff[n]));
}
}
/*
int main(int argc, char **argv){
float window[30];
struct filter *f = filter_new(1024,1025);
float low_cutoff = atof(argv[1])/22000.0;
float high_cutoff = atof(argv[2])/22000.0;
filter_tune(f, low_cutoff, high_cutoff, 5.0);
}
*/