Skip to content

Kafka partition assignor that distributes lag evenly across a consumer group

License

Notifications You must be signed in to change notification settings

agarman/kafka-lag-based-assignor

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

kafka-lag-based-assignor

Kafka partition assignor that distributes lag evenly across a consumer group.

Requires Kafka 0.10.0.0 or later.

To configure a Kafka consumer group to use lag-based partition assignment:

  1. Add the following maven dependency to your Kafka consumer application:
    <dependency>
        <groupId>com.github.grantneale</groupId>
        <artifactId>kafka-lag-based-assignor</artifactId>
    </dependency>
  2. Set the following in your Kafka consumer properties:
    partition.assignment.strategy = com.github.grantneale.kafka.LagBasedPartitionAssignor

Overview

The LagBasedPartitionAssignor operates on a per-topic basis, and attempts to assign partitions such that lag is distributed evenly across a consumer group.

For each topic, we first obtain the lag on all partitions. Lag on a given partition is the difference between the end offset and the last offset committed by the consumer group. If no offsets have been committed for a partition we determine the lag based on the code auto.offset.reset property. If auto.offset.reset=latest, we assign a lag of 0. If auto.offset.reset=earliest (or any other value) we assume assign lag equal to the total number of message currently available in that partition.

We then create a map storing the current total lag of all partitions assigned to each member of the consumer group. Partitions are assigned in decreasing order of lag, with each partition assigned to the consumer with least total lag.

Example: LagBasedPartitionAssignor

For example, suppose there are two consumers C0 and C1, both subscribed to a topic t0 having 3 partitions with the following lags:

t0p0: 100,000
t0p1:  50,000
t0p2:  60,000

The assignment will be:

C0: [t0p0]
C1: [t0p1, t0p2]

The total lag or partitions assigned to each consumer will be:

C0: 100,000
C1: 110,000

Example: RangeAssignor (kafka default)

Compare this to the assignments made by Kafka's default org.apache.kafka.clients.consumer.RangeAssignor:

C0: [t0p0, t0p1]
C1: [t0p2]

The RangeAssignor results in a less balanced total lag for each consumer of:

C0: 160,000
C1:  50,000

About

Kafka partition assignor that distributes lag evenly across a consumer group

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Java 100.0%