forked from THU-LYJ-Lab/DarkFeat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
export_features.py
128 lines (105 loc) · 4.98 KB
/
export_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import argparse
import glob
import math
import subprocess
import numpy as np
import os
import tqdm
import torch
import torch.nn as nn
import cv2
from darkfeat import DarkFeat
from utils import matching
def darkfeat_pre(img, cuda):
H, W = img.shape[0], img.shape[1]
inp = img.copy()
inp = inp.transpose(2, 0, 1)
inp = torch.from_numpy(inp)
inp = torch.autograd.Variable(inp).view(1, 3, H, W)
if cuda:
inp = inp.cuda()
return inp
if __name__ == '__main__':
# Parse command line arguments.
parser = argparse.ArgumentParser()
parser.add_argument('--H', type=int, default=int(640))
parser.add_argument('--W', type=int, default=int(960))
parser.add_argument('--histeq', action='store_true')
parser.add_argument('--model_path', type=str)
parser.add_argument('--dataset_dir', type=str, default='/data/hyz/MID/')
opt = parser.parse_args()
sizer = (opt.W, opt.H)
focallength_x = 4.504986436499113e+03/(6744/sizer[0])
focallength_y = 4.513311442889859e+03/(4502/sizer[1])
K = np.eye(3)
K[0,0] = focallength_x
K[1,1] = focallength_y
K[0,2] = 3.363322177533149e+03/(6744/sizer[0])# * 0.5
K[1,2] = 2.291824660547715e+03/(4502/sizer[1])# * 0.5
Kinv = np.linalg.inv(K)
Kinvt = np.transpose(Kinv)
cuda = True
if cuda:
darkfeat = DarkFeat(opt.model_path).cuda().eval()
for scene in ['Indoor', 'Outdoor']:
base_save = './result/' + scene + '/'
dir_base = opt.dataset_dir + '/' + scene + '/'
pair_list = sorted(os.listdir(dir_base))
for pair in tqdm.tqdm(pair_list):
opention = 1
if scene == 'Outdoor':
pass
else:
if int(pair[4::]) <= 17:
opention = 0
else:
pass
name=[]
files = sorted(os.listdir(dir_base+pair))
for file_ in files:
if file_.endswith('.cr2'):
name.append(file_[0:9])
ISO = ['00100', '00200', '00400', '00800', '01600', '03200', '06400', '12800']
if opention == 1:
Shutter_speed = ['0.005','0.01','0.025','0.05','0.17','0.5']
else:
Shutter_speed = ['0.01','0.02','0.05','0.1','0.3','1']
E_GT = np.load(dir_base+pair+'/GT_Correspondence/'+'E_estimated.npy')
F_GT = np.dot(np.dot(Kinvt,E_GT),Kinv)
R_GT = np.load(dir_base+pair+'/GT_Correspondence/'+'R_GT.npy')
t_GT = np.load(dir_base+pair+'/GT_Correspondence/'+'T_GT.npy')
id0, id1 = sorted([ int(i.split('/')[-1]) for i in glob.glob(f'{dir_base+pair}/?????') ])
cnt = 0
for iso in ISO:
for ex in Shutter_speed:
dark_name1 = name[0] + iso+'_'+ex+'_'+scene+'.npy'
dark_name2 = name[1] + iso+'_'+ex+'_'+scene+'.npy'
if not opt.histeq:
dst_T1_None = f'{dir_base}{pair}/{id0:05d}-npy-nohisteq/{dark_name1}'
dst_T2_None = f'{dir_base}{pair}/{id1:05d}-npy-nohisteq/{dark_name2}'
img1_orig_None = np.load(dst_T1_None)
img2_orig_None = np.load(dst_T2_None)
dir_save = base_save + pair + '/None/'
img_input1 = darkfeat_pre(img1_orig_None.astype('float32')/255.0, cuda)
img_input2 = darkfeat_pre(img2_orig_None.astype('float32')/255.0, cuda)
else:
dst_T1_histeq = f'{dir_base}{pair}/{id0:05d}-npy/{dark_name1}'
dst_T2_histeq = f'{dir_base}{pair}/{id1:05d}-npy/{dark_name2}'
img1_orig_histeq = np.load(dst_T1_histeq)
img2_orig_histeq = np.load(dst_T2_histeq)
dir_save = base_save + pair + '/HistEQ/'
img_input1 = darkfeat_pre(img1_orig_histeq.astype('float32')/255.0, cuda)
img_input2 = darkfeat_pre(img2_orig_histeq.astype('float32')/255.0, cuda)
result1 = darkfeat({'image': img_input1})
result2 = darkfeat({'image': img_input2})
mkpts0, mkpts1, _ = matching.match_descriptors(
cv2.KeyPoint_convert(result1['keypoints'].detach().cpu().float().numpy()), result1['descriptors'].detach().cpu().numpy(),
cv2.KeyPoint_convert(result2['keypoints'].detach().cpu().float().numpy()), result2['descriptors'].detach().cpu().numpy(),
ORB=False
)
POINT_1_dir = dir_save+f'DarkFeat/POINT_1/'
POINT_2_dir = dir_save+f'DarkFeat/POINT_2/'
subprocess.check_output(['mkdir', '-p', POINT_1_dir])
subprocess.check_output(['mkdir', '-p', POINT_2_dir])
np.save(POINT_1_dir+dark_name1[0:-3]+'npy',mkpts0)
np.save(POINT_2_dir+dark_name2[0:-3]+'npy',mkpts1)