forked from THU-LYJ-Lab/DarkFeat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
nn.py
50 lines (40 loc) · 1.87 KB
/
nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch
from torch import nn
class NN2(nn.Module):
def __init__(self):
super().__init__()
def forward(self, data):
desc1, desc2 = data['descriptors0'].cuda(), data['descriptors1'].cuda()
kpts1, kpts2 = data['keypoints0'].cuda(), data['keypoints1'].cuda()
# torch.cuda.synchronize()
# t = time.time()
if kpts1.shape[1] <= 1 or kpts2.shape[1] <= 1: # no keypoints
shape0, shape1 = kpts1.shape[:-1], kpts2.shape[:-1]
return {
'matches0': kpts1.new_full(shape0, -1, dtype=torch.int),
'matches1': kpts2.new_full(shape1, -1, dtype=torch.int),
'matching_scores0': kpts1.new_zeros(shape0),
'matching_scores1': kpts2.new_zeros(shape1),
}
sim = torch.matmul(desc1.squeeze().T, desc2.squeeze())
ids1 = torch.arange(0, sim.shape[0], device=desc1.device)
nn12 = torch.argmax(sim, dim=1)
nn21 = torch.argmax(sim, dim=0)
mask = torch.eq(ids1, nn21[nn12])
matches = torch.stack([torch.masked_select(ids1, mask), torch.masked_select(nn12, mask)])
# matches = torch.stack([ids1, nn12])
indices0 = torch.ones((1, desc1.shape[-1]), dtype=int) * -1
mscores0 = torch.ones((1, desc1.shape[-1]), dtype=float) * -1
# torch.cuda.synchronize()
# print(time.time() - t)
matches_0 = matches[0].cpu().int().numpy()
matches_1 = matches[1].cpu().int()
for i in range(matches.shape[-1]):
indices0[0, matches_0[i]] = matches_1[i].int()
mscores0[0, matches_0[i]] = sim[matches_0[i], matches_1[i]]
return {
'matches0': indices0, # use -1 for invalid match
'matches1': indices0, # use -1 for invalid match
'matching_scores0': mscores0,
'matching_scores1': mscores0,
}