forked from zihangdai/xlnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_squad.py
1310 lines (1079 loc) · 44.8 KB
/
run_squad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding=utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import flags
import absl.logging as _logging # pylint: disable=unused-import
import collections
import os
import time
import math
import json
import six
import random
import gc
import numpy as np
if six.PY2:
import cPickle as pickle
else:
import pickle
import tensorflow as tf
import sentencepiece as spm
from prepro_utils import preprocess_text, encode_ids, encode_pieces, printable_text
import function_builder
import model_utils
import squad_utils
from data_utils import SEP_ID, CLS_ID, VOCAB_SIZE
SPIECE_UNDERLINE = u'▁'
SEG_ID_P = 0
SEG_ID_Q = 1
SEG_ID_CLS = 2
SEG_ID_PAD = 3
# Preprocessing
flags.DEFINE_bool("do_prepro", default=False,
help="Perform preprocessing only.")
flags.DEFINE_integer("num_proc", default=1,
help="Number of preprocessing processes.")
flags.DEFINE_integer("proc_id", default=0,
help="Process id for preprocessing.")
# Model
flags.DEFINE_string("model_config_path", default=None,
help="Model config path.")
flags.DEFINE_float("dropout", default=0.1,
help="Dropout rate.")
flags.DEFINE_float("dropatt", default=0.1,
help="Attention dropout rate.")
flags.DEFINE_integer("clamp_len", default=-1,
help="Clamp length.")
flags.DEFINE_string("summary_type", default="last",
help="Method used to summarize a sequence into a vector.")
flags.DEFINE_bool("use_bfloat16", default=False,
help="Whether to use bfloat16.")
# Parameter initialization
flags.DEFINE_enum("init", default="normal",
enum_values=["normal", "uniform"],
help="Initialization method.")
flags.DEFINE_float("init_std", default=0.02,
help="Initialization std when init is normal.")
flags.DEFINE_float("init_range", default=0.1,
help="Initialization std when init is uniform.")
# I/O paths
flags.DEFINE_bool("overwrite_data", default=False,
help="If False, will use cached data if available.")
flags.DEFINE_string("init_checkpoint", default=None,
help="checkpoint path for initializing the model. "
"Could be a pretrained model or a finetuned model.")
flags.DEFINE_bool("init_global_vars", default=False,
help="If true, init all global vars. If false, init "
"trainable vars only.")
flags.DEFINE_string("output_dir", default="",
help="Output dir for TF records.")
flags.DEFINE_string("predict_dir", default="",
help="Dir for predictions.")
flags.DEFINE_string("spiece_model_file", default="",
help="Sentence Piece model path.")
flags.DEFINE_string("model_dir", default="",
help="Directory for saving the finetuned model.")
flags.DEFINE_string("train_file", default="",
help="Path of train file.")
flags.DEFINE_string("predict_file", default="",
help="Path of prediction file.")
# Data preprocessing config
flags.DEFINE_integer("max_seq_length",
default=512, help="Max sequence length")
flags.DEFINE_integer("max_query_length",
default=64, help="Max query length")
flags.DEFINE_integer("doc_stride",
default=128, help="Doc stride")
flags.DEFINE_integer("max_answer_length",
default=64, help="Max answer length")
flags.DEFINE_bool("uncased", default=False, help="Use uncased data.")
# TPUs and machines
flags.DEFINE_bool("use_tpu", default=False, help="whether to use TPU.")
flags.DEFINE_integer("num_hosts", default=1, help="How many TPU hosts.")
flags.DEFINE_integer("num_core_per_host", default=8,
help="8 for TPU v2 and v3-8, 16 for larger TPU v3 pod. In the context "
"of GPU training, it refers to the number of GPUs used.")
flags.DEFINE_string("tpu_job_name", default=None, help="TPU worker job name.")
flags.DEFINE_string("tpu", default=None, help="TPU name.")
flags.DEFINE_string("tpu_zone", default=None, help="TPU zone.")
flags.DEFINE_string("gcp_project", default=None, help="gcp project.")
flags.DEFINE_string("master", default=None, help="master")
flags.DEFINE_integer("iterations", default=1000,
help="number of iterations per TPU training loop.")
# Training
flags.DEFINE_bool("do_train", default=True, help="whether to do training")
flags.DEFINE_integer("train_batch_size", default=48,
help="batch size for training")
flags.DEFINE_integer("train_steps", default=8000,
help="Number of training steps")
flags.DEFINE_integer("warmup_steps", default=0, help="number of warmup steps")
flags.DEFINE_integer("save_steps", default=None,
help="Save the model for every save_steps. "
"If None, not to save any model.")
flags.DEFINE_integer("max_save", default=5,
help="Max number of checkpoints to save. "
"Use 0 to save all.")
flags.DEFINE_integer("shuffle_buffer", default=2048,
help="Buffer size used for shuffle.")
# Optimization
flags.DEFINE_float("learning_rate", default=3e-5, help="initial learning rate")
flags.DEFINE_float("min_lr_ratio", default=0.0,
help="min lr ratio for cos decay.")
flags.DEFINE_float("clip", default=1.0, help="Gradient clipping")
flags.DEFINE_float("weight_decay", default=0.00, help="Weight decay rate")
flags.DEFINE_float("adam_epsilon", default=1e-6, help="Adam epsilon")
flags.DEFINE_string("decay_method", default="poly", help="poly or cos")
flags.DEFINE_float("lr_layer_decay_rate", default=0.75,
help="Top layer: lr[L] = FLAGS.learning_rate."
"Lower layers: lr[l-1] = lr[l] * lr_layer_decay_rate.")
# Eval / Prediction
flags.DEFINE_bool("do_predict", default=False, help="whether to do predict")
flags.DEFINE_integer("predict_batch_size", default=32,
help="batch size for prediction")
flags.DEFINE_integer("n_best_size", default=5,
help="n best size for predictions")
flags.DEFINE_integer("start_n_top", default=5, help="Beam size for span start.")
flags.DEFINE_integer("end_n_top", default=5, help="Beam size for span end.")
flags.DEFINE_string("target_eval_key", default="best_f1",
help="Use has_ans_f1 for Model I.")
FLAGS = flags.FLAGS
class SquadExample(object):
"""A single training/test example for simple sequence classification.
For examples without an answer, the start and end position are -1.
"""
def __init__(self,
qas_id,
question_text,
paragraph_text,
orig_answer_text=None,
start_position=None,
is_impossible=False):
self.qas_id = qas_id
self.question_text = question_text
self.paragraph_text = paragraph_text
self.orig_answer_text = orig_answer_text
self.start_position = start_position
self.is_impossible = is_impossible
def __str__(self):
return self.__repr__()
def __repr__(self):
s = ""
s += "qas_id: %s" % (printable_text(self.qas_id))
s += ", question_text: %s" % (
printable_text(self.question_text))
s += ", paragraph_text: [%s]" % (" ".join(self.paragraph_text))
if self.start_position:
s += ", start_position: %d" % (self.start_position)
if self.start_position:
s += ", is_impossible: %r" % (self.is_impossible)
return s
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self,
unique_id,
example_index,
doc_span_index,
tok_start_to_orig_index,
tok_end_to_orig_index,
token_is_max_context,
input_ids,
input_mask,
p_mask,
segment_ids,
paragraph_len,
cls_index,
start_position=None,
end_position=None,
is_impossible=None):
self.unique_id = unique_id
self.example_index = example_index
self.doc_span_index = doc_span_index
self.tok_start_to_orig_index = tok_start_to_orig_index
self.tok_end_to_orig_index = tok_end_to_orig_index
self.token_is_max_context = token_is_max_context
self.input_ids = input_ids
self.input_mask = input_mask
self.p_mask = p_mask
self.segment_ids = segment_ids
self.paragraph_len = paragraph_len
self.cls_index = cls_index
self.start_position = start_position
self.end_position = end_position
self.is_impossible = is_impossible
def read_squad_examples(input_file, is_training):
"""Read a SQuAD json file into a list of SquadExample."""
with tf.gfile.Open(input_file, "r") as reader:
input_data = json.load(reader)["data"]
examples = []
for entry in input_data:
for paragraph in entry["paragraphs"]:
paragraph_text = paragraph["context"]
for qa in paragraph["qas"]:
qas_id = qa["id"]
question_text = qa["question"]
start_position = None
orig_answer_text = None
is_impossible = False
if is_training:
is_impossible = qa["is_impossible"]
if (len(qa["answers"]) != 1) and (not is_impossible):
raise ValueError(
"For training, each question should have exactly 1 answer.")
if not is_impossible:
answer = qa["answers"][0]
orig_answer_text = answer["text"]
start_position = answer["answer_start"]
else:
start_position = -1
orig_answer_text = ""
example = SquadExample(
qas_id=qas_id,
question_text=question_text,
paragraph_text=paragraph_text,
orig_answer_text=orig_answer_text,
start_position=start_position,
is_impossible=is_impossible)
examples.append(example)
return examples
def _convert_index(index, pos, M=None, is_start=True):
if index[pos] is not None:
return index[pos]
N = len(index)
rear = pos
while rear < N - 1 and index[rear] is None:
rear += 1
front = pos
while front > 0 and index[front] is None:
front -= 1
assert index[front] is not None or index[rear] is not None
if index[front] is None:
if index[rear] >= 1:
if is_start:
return 0
else:
return index[rear] - 1
return index[rear]
if index[rear] is None:
if M is not None and index[front] < M - 1:
if is_start:
return index[front] + 1
else:
return M - 1
return index[front]
if is_start:
if index[rear] > index[front] + 1:
return index[front] + 1
else:
return index[rear]
else:
if index[rear] > index[front] + 1:
return index[rear] - 1
else:
return index[front]
def convert_examples_to_features(examples, sp_model, max_seq_length,
doc_stride, max_query_length, is_training,
output_fn):
"""Loads a data file into a list of `InputBatch`s."""
cnt_pos, cnt_neg = 0, 0
unique_id = 1000000000
max_N, max_M = 1024, 1024
f = np.zeros((max_N, max_M), dtype=np.float32)
for (example_index, example) in enumerate(examples):
if example_index % 100 == 0:
tf.logging.info('Converting {}/{} pos {} neg {}'.format(
example_index, len(examples), cnt_pos, cnt_neg))
query_tokens = encode_ids(
sp_model,
preprocess_text(example.question_text, lower=FLAGS.uncased))
if len(query_tokens) > max_query_length:
query_tokens = query_tokens[0:max_query_length]
paragraph_text = example.paragraph_text
para_tokens = encode_pieces(
sp_model,
preprocess_text(example.paragraph_text, lower=FLAGS.uncased))
chartok_to_tok_index = []
tok_start_to_chartok_index = []
tok_end_to_chartok_index = []
char_cnt = 0
for i, token in enumerate(para_tokens):
chartok_to_tok_index.extend([i] * len(token))
tok_start_to_chartok_index.append(char_cnt)
char_cnt += len(token)
tok_end_to_chartok_index.append(char_cnt - 1)
tok_cat_text = ''.join(para_tokens).replace(SPIECE_UNDERLINE, ' ')
N, M = len(paragraph_text), len(tok_cat_text)
if N > max_N or M > max_M:
max_N = max(N, max_N)
max_M = max(M, max_M)
f = np.zeros((max_N, max_M), dtype=np.float32)
gc.collect()
g = {}
def _lcs_match(max_dist):
f.fill(0)
g.clear()
### longest common sub sequence
# f[i, j] = max(f[i - 1, j], f[i, j - 1], f[i - 1, j - 1] + match(i, j))
for i in range(N):
# note(zhiliny):
# unlike standard LCS, this is specifically optimized for the setting
# because the mismatch between sentence pieces and original text will
# be small
for j in range(i - max_dist, i + max_dist):
if j >= M or j < 0: continue
if i > 0:
g[(i, j)] = 0
f[i, j] = f[i - 1, j]
if j > 0 and f[i, j - 1] > f[i, j]:
g[(i, j)] = 1
f[i, j] = f[i, j - 1]
f_prev = f[i - 1, j - 1] if i > 0 and j > 0 else 0
if (preprocess_text(paragraph_text[i], lower=FLAGS.uncased,
remove_space=False)
== tok_cat_text[j]
and f_prev + 1 > f[i, j]):
g[(i, j)] = 2
f[i, j] = f_prev + 1
max_dist = abs(N - M) + 5
for _ in range(2):
_lcs_match(max_dist)
if f[N - 1, M - 1] > 0.8 * N: break
max_dist *= 2
orig_to_chartok_index = [None] * N
chartok_to_orig_index = [None] * M
i, j = N - 1, M - 1
while i >= 0 and j >= 0:
if (i, j) not in g: break
if g[(i, j)] == 2:
orig_to_chartok_index[i] = j
chartok_to_orig_index[j] = i
i, j = i - 1, j - 1
elif g[(i, j)] == 1:
j = j - 1
else:
i = i - 1
if all(v is None for v in orig_to_chartok_index) or f[N - 1, M - 1] < 0.8 * N:
print('MISMATCH DETECTED!')
continue
tok_start_to_orig_index = []
tok_end_to_orig_index = []
for i in range(len(para_tokens)):
start_chartok_pos = tok_start_to_chartok_index[i]
end_chartok_pos = tok_end_to_chartok_index[i]
start_orig_pos = _convert_index(chartok_to_orig_index, start_chartok_pos,
N, is_start=True)
end_orig_pos = _convert_index(chartok_to_orig_index, end_chartok_pos,
N, is_start=False)
tok_start_to_orig_index.append(start_orig_pos)
tok_end_to_orig_index.append(end_orig_pos)
if not is_training:
tok_start_position = tok_end_position = None
if is_training and example.is_impossible:
tok_start_position = -1
tok_end_position = -1
if is_training and not example.is_impossible:
start_position = example.start_position
end_position = start_position + len(example.orig_answer_text) - 1
start_chartok_pos = _convert_index(orig_to_chartok_index, start_position,
is_start=True)
tok_start_position = chartok_to_tok_index[start_chartok_pos]
end_chartok_pos = _convert_index(orig_to_chartok_index, end_position,
is_start=False)
tok_end_position = chartok_to_tok_index[end_chartok_pos]
assert tok_start_position <= tok_end_position
def _piece_to_id(x):
if six.PY2 and isinstance(x, unicode):
x = x.encode('utf-8')
return sp_model.PieceToId(x)
all_doc_tokens = list(map(_piece_to_id, para_tokens))
# The -3 accounts for [CLS], [SEP] and [SEP]
max_tokens_for_doc = max_seq_length - len(query_tokens) - 3
# We can have documents that are longer than the maximum sequence length.
# To deal with this we do a sliding window approach, where we take chunks
# of the up to our max length with a stride of `doc_stride`.
_DocSpan = collections.namedtuple( # pylint: disable=invalid-name
"DocSpan", ["start", "length"])
doc_spans = []
start_offset = 0
while start_offset < len(all_doc_tokens):
length = len(all_doc_tokens) - start_offset
if length > max_tokens_for_doc:
length = max_tokens_for_doc
doc_spans.append(_DocSpan(start=start_offset, length=length))
if start_offset + length == len(all_doc_tokens):
break
start_offset += min(length, doc_stride)
for (doc_span_index, doc_span) in enumerate(doc_spans):
tokens = []
token_is_max_context = {}
segment_ids = []
p_mask = []
cur_tok_start_to_orig_index = []
cur_tok_end_to_orig_index = []
for i in range(doc_span.length):
split_token_index = doc_span.start + i
cur_tok_start_to_orig_index.append(
tok_start_to_orig_index[split_token_index])
cur_tok_end_to_orig_index.append(
tok_end_to_orig_index[split_token_index])
is_max_context = _check_is_max_context(doc_spans, doc_span_index,
split_token_index)
token_is_max_context[len(tokens)] = is_max_context
tokens.append(all_doc_tokens[split_token_index])
segment_ids.append(SEG_ID_P)
p_mask.append(0)
paragraph_len = len(tokens)
tokens.append(SEP_ID)
segment_ids.append(SEG_ID_P)
p_mask.append(1)
# note(zhiliny): we put P before Q
# because during pretraining, B is always shorter than A
for token in query_tokens:
tokens.append(token)
segment_ids.append(SEG_ID_Q)
p_mask.append(1)
tokens.append(SEP_ID)
segment_ids.append(SEG_ID_Q)
p_mask.append(1)
cls_index = len(segment_ids)
tokens.append(CLS_ID)
segment_ids.append(SEG_ID_CLS)
p_mask.append(0)
input_ids = tokens
# The mask has 0 for real tokens and 1 for padding tokens. Only real
# tokens are attended to.
input_mask = [0] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(1)
segment_ids.append(SEG_ID_PAD)
p_mask.append(1)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(p_mask) == max_seq_length
span_is_impossible = example.is_impossible
start_position = None
end_position = None
if is_training and not span_is_impossible:
# For training, if our document chunk does not contain an annotation
# we throw it out, since there is nothing to predict.
doc_start = doc_span.start
doc_end = doc_span.start + doc_span.length - 1
out_of_span = False
if not (tok_start_position >= doc_start and
tok_end_position <= doc_end):
out_of_span = True
if out_of_span:
# continue
start_position = 0
end_position = 0
span_is_impossible = True
else:
# note(zhiliny): we put P before Q, so doc_offset should be zero.
# doc_offset = len(query_tokens) + 2
doc_offset = 0
start_position = tok_start_position - doc_start + doc_offset
end_position = tok_end_position - doc_start + doc_offset
if is_training and span_is_impossible:
start_position = cls_index
end_position = cls_index
if example_index < 20:
tf.logging.info("*** Example ***")
tf.logging.info("unique_id: %s" % (unique_id))
tf.logging.info("example_index: %s" % (example_index))
tf.logging.info("doc_span_index: %s" % (doc_span_index))
tf.logging.info("tok_start_to_orig_index: %s" % " ".join(
[str(x) for x in cur_tok_start_to_orig_index]))
tf.logging.info("tok_end_to_orig_index: %s" % " ".join(
[str(x) for x in cur_tok_end_to_orig_index]))
tf.logging.info("token_is_max_context: %s" % " ".join([
"%d:%s" % (x, y) for (x, y) in six.iteritems(token_is_max_context)
]))
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
tf.logging.info(
"input_mask: %s" % " ".join([str(x) for x in input_mask]))
tf.logging.info(
"segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
if is_training and span_is_impossible:
tf.logging.info("impossible example span")
if is_training and not span_is_impossible:
pieces = [sp_model.IdToPiece(token) for token in
tokens[start_position: (end_position + 1)]]
answer_text = sp_model.DecodePieces(pieces)
tf.logging.info("start_position: %d" % (start_position))
tf.logging.info("end_position: %d" % (end_position))
tf.logging.info(
"answer: %s" % (printable_text(answer_text)))
# note(zhiliny): With multi processing,
# the example_index is actually the index within the current process
# therefore we use example_index=None to avoid being used in the future.
# The current code does not use example_index of training data.
if is_training:
feat_example_index = None
else:
feat_example_index = example_index
feature = InputFeatures(
unique_id=unique_id,
example_index=feat_example_index,
doc_span_index=doc_span_index,
tok_start_to_orig_index=cur_tok_start_to_orig_index,
tok_end_to_orig_index=cur_tok_end_to_orig_index,
token_is_max_context=token_is_max_context,
input_ids=input_ids,
input_mask=input_mask,
p_mask=p_mask,
segment_ids=segment_ids,
paragraph_len=paragraph_len,
cls_index=cls_index,
start_position=start_position,
end_position=end_position,
is_impossible=span_is_impossible)
# Run callback
output_fn(feature)
unique_id += 1
if span_is_impossible:
cnt_neg += 1
else:
cnt_pos += 1
tf.logging.info("Total number of instances: {} = pos {} neg {}".format(
cnt_pos + cnt_neg, cnt_pos, cnt_neg))
def _check_is_max_context(doc_spans, cur_span_index, position):
"""Check if this is the 'max context' doc span for the token."""
# Because of the sliding window approach taken to scoring documents, a single
# token can appear in multiple documents. E.g.
# Doc: the man went to the store and bought a gallon of milk
# Span A: the man went to the
# Span B: to the store and bought
# Span C: and bought a gallon of
# ...
#
# Now the word 'bought' will have two scores from spans B and C. We only
# want to consider the score with "maximum context", which we define as
# the *minimum* of its left and right context (the *sum* of left and
# right context will always be the same, of course).
#
# In the example the maximum context for 'bought' would be span C since
# it has 1 left context and 3 right context, while span B has 4 left context
# and 0 right context.
best_score = None
best_span_index = None
for (span_index, doc_span) in enumerate(doc_spans):
end = doc_span.start + doc_span.length - 1
if position < doc_span.start:
continue
if position > end:
continue
num_left_context = position - doc_span.start
num_right_context = end - position
score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
if best_score is None or score > best_score:
best_score = score
best_span_index = span_index
return cur_span_index == best_span_index
class FeatureWriter(object):
"""Writes InputFeature to TF example file."""
def __init__(self, filename, is_training):
self.filename = filename
self.is_training = is_training
self.num_features = 0
self._writer = tf.python_io.TFRecordWriter(filename)
def process_feature(self, feature):
"""Write a InputFeature to the TFRecordWriter as a tf.train.Example."""
self.num_features += 1
def create_int_feature(values):
feature = tf.train.Feature(
int64_list=tf.train.Int64List(value=list(values)))
return feature
def create_float_feature(values):
f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
return f
features = collections.OrderedDict()
features["unique_ids"] = create_int_feature([feature.unique_id])
features["input_ids"] = create_int_feature(feature.input_ids)
features["input_mask"] = create_float_feature(feature.input_mask)
features["p_mask"] = create_float_feature(feature.p_mask)
features["segment_ids"] = create_int_feature(feature.segment_ids)
features["cls_index"] = create_int_feature([feature.cls_index])
if self.is_training:
features["start_positions"] = create_int_feature([feature.start_position])
features["end_positions"] = create_int_feature([feature.end_position])
impossible = 0
if feature.is_impossible:
impossible = 1
features["is_impossible"] = create_float_feature([impossible])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
self._writer.write(tf_example.SerializeToString())
def close(self):
self._writer.close()
RawResult = collections.namedtuple("RawResult",
["unique_id", "start_top_log_probs", "start_top_index",
"end_top_log_probs", "end_top_index", "cls_logits"])
_PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name
"PrelimPrediction",
["feature_index", "start_index", "end_index",
"start_log_prob", "end_log_prob"])
_NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name
"NbestPrediction", ["text", "start_log_prob", "end_log_prob"])
def write_predictions(all_examples, all_features, all_results, n_best_size,
max_answer_length, output_prediction_file,
output_nbest_file,
output_null_log_odds_file, orig_data):
"""Write final predictions to the json file and log-odds of null if needed."""
tf.logging.info("Writing predictions to: %s" % (output_prediction_file))
# tf.logging.info("Writing nbest to: %s" % (output_nbest_file))
example_index_to_features = collections.defaultdict(list)
for feature in all_features:
example_index_to_features[feature.example_index].append(feature)
unique_id_to_result = {}
for result in all_results:
unique_id_to_result[result.unique_id] = result
all_predictions = collections.OrderedDict()
all_nbest_json = collections.OrderedDict()
scores_diff_json = collections.OrderedDict()
for (example_index, example) in enumerate(all_examples):
features = example_index_to_features[example_index]
prelim_predictions = []
# keep track of the minimum score of null start+end of position 0
score_null = 1000000 # large and positive
for (feature_index, feature) in enumerate(features):
result = unique_id_to_result[feature.unique_id]
cur_null_score = result.cls_logits
# if we could have irrelevant answers, get the min score of irrelevant
score_null = min(score_null, cur_null_score)
for i in range(FLAGS.start_n_top):
for j in range(FLAGS.end_n_top):
start_log_prob = result.start_top_log_probs[i]
start_index = result.start_top_index[i]
j_index = i * FLAGS.end_n_top + j
end_log_prob = result.end_top_log_probs[j_index]
end_index = result.end_top_index[j_index]
# We could hypothetically create invalid predictions, e.g., predict
# that the start of the span is in the question. We throw out all
# invalid predictions.
if start_index >= feature.paragraph_len - 1:
continue
if end_index >= feature.paragraph_len - 1:
continue
if not feature.token_is_max_context.get(start_index, False):
continue
if end_index < start_index:
continue
length = end_index - start_index + 1
if length > max_answer_length:
continue
prelim_predictions.append(
_PrelimPrediction(
feature_index=feature_index,
start_index=start_index,
end_index=end_index,
start_log_prob=start_log_prob,
end_log_prob=end_log_prob))
prelim_predictions = sorted(
prelim_predictions,
key=lambda x: (x.start_log_prob + x.end_log_prob),
reverse=True)
seen_predictions = {}
nbest = []
for pred in prelim_predictions:
if len(nbest) >= n_best_size:
break
feature = features[pred.feature_index]
tok_start_to_orig_index = feature.tok_start_to_orig_index
tok_end_to_orig_index = feature.tok_end_to_orig_index
start_orig_pos = tok_start_to_orig_index[pred.start_index]
end_orig_pos = tok_end_to_orig_index[pred.end_index]
paragraph_text = example.paragraph_text
final_text = paragraph_text[start_orig_pos: end_orig_pos + 1].strip()
if final_text in seen_predictions:
continue
seen_predictions[final_text] = True
nbest.append(
_NbestPrediction(
text=final_text,
start_log_prob=pred.start_log_prob,
end_log_prob=pred.end_log_prob))
# In very rare edge cases we could have no valid predictions. So we
# just create a nonce prediction in this case to avoid failure.
if not nbest:
nbest.append(
_NbestPrediction(text="", start_log_prob=-1e6,
end_log_prob=-1e6))
total_scores = []
best_non_null_entry = None
for entry in nbest:
total_scores.append(entry.start_log_prob + entry.end_log_prob)
if not best_non_null_entry:
best_non_null_entry = entry
probs = _compute_softmax(total_scores)
nbest_json = []
for (i, entry) in enumerate(nbest):
output = collections.OrderedDict()
output["text"] = entry.text
output["probability"] = probs[i]
output["start_log_prob"] = entry.start_log_prob
output["end_log_prob"] = entry.end_log_prob
nbest_json.append(output)
assert len(nbest_json) >= 1
assert best_non_null_entry is not None
score_diff = score_null
scores_diff_json[example.qas_id] = score_diff
# note(zhiliny): always predict best_non_null_entry
# and the evaluation script will search for the best threshold
all_predictions[example.qas_id] = best_non_null_entry.text
all_nbest_json[example.qas_id] = nbest_json
with tf.gfile.GFile(output_prediction_file, "w") as writer:
writer.write(json.dumps(all_predictions, indent=4) + "\n")
with tf.gfile.GFile(output_nbest_file, "w") as writer:
writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
with tf.gfile.GFile(output_null_log_odds_file, "w") as writer:
writer.write(json.dumps(scores_diff_json, indent=4) + "\n")
qid_to_has_ans = squad_utils.make_qid_to_has_ans(orig_data)
has_ans_qids = [k for k, v in qid_to_has_ans.items() if v]
no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v]
exact_raw, f1_raw = squad_utils.get_raw_scores(orig_data, all_predictions)
out_eval = {}
squad_utils.find_all_best_thresh_v2(out_eval, all_predictions, exact_raw, f1_raw,
scores_diff_json, qid_to_has_ans)
return out_eval
def _get_best_indexes(logits, n_best_size):
"""Get the n-best logits from a list."""
index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True)
best_indexes = []
for i in range(len(index_and_score)):
if i >= n_best_size:
break
best_indexes.append(index_and_score[i][0])
return best_indexes
def _compute_softmax(scores):
"""Compute softmax probability over raw logits."""
if not scores:
return []
max_score = None
for score in scores:
if max_score is None or score > max_score:
max_score = score
exp_scores = []
total_sum = 0.0
for score in scores:
x = math.exp(score - max_score)
exp_scores.append(x)
total_sum += x
probs = []
for score in exp_scores:
probs.append(score / total_sum)
return probs
def input_fn_builder(input_glob, seq_length, is_training, drop_remainder,
num_hosts, num_threads=8):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
name_to_features = {
"unique_ids": tf.FixedLenFeature([], tf.int64),
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length], tf.float32),
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
"cls_index": tf.FixedLenFeature([], tf.int64),
"p_mask": tf.FixedLenFeature([seq_length], tf.float32)
}
if is_training:
name_to_features["start_positions"] = tf.FixedLenFeature([], tf.int64)
name_to_features["end_positions"] = tf.FixedLenFeature([], tf.int64)
name_to_features["is_impossible"] = tf.FixedLenFeature([], tf.float32)
tf.logging.info("Input tfrecord file glob {}".format(input_glob))
global_input_paths = tf.gfile.Glob(input_glob)
tf.logging.info("Find {} input paths {}".format(
len(global_input_paths), global_input_paths))
def _decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.cast(t, tf.int32)
example[name] = t
return example
def input_fn(params):
"""The actual input function."""
if FLAGS.use_tpu:
batch_size = params["batch_size"]
elif is_training:
batch_size = FLAGS.train_batch_size
else:
batch_size = FLAGS.predict_batch_size
# Split tfrecords across hosts
if num_hosts > 1:
host_id = params["context"].current_host
num_files = len(global_input_paths)
if num_files >= num_hosts:
num_files_per_host = (num_files + num_hosts - 1) // num_hosts
my_start_file_id = host_id * num_files_per_host
my_end_file_id = min((host_id + 1) * num_files_per_host, num_files)
input_paths = global_input_paths[my_start_file_id: my_end_file_id]
tf.logging.info("Host {} handles {} files".format(host_id,
len(input_paths)))
else:
input_paths = global_input_paths
if len(input_paths) == 1:
d = tf.data.TFRecordDataset(input_paths[0])
# For training, we want a lot of parallel reading and shuffling.
# For eval, we want no shuffling and parallel reading doesn't matter.
if is_training:
d = d.shuffle(buffer_size=FLAGS.shuffle_buffer)
d = d.repeat()
else:
d = tf.data.Dataset.from_tensor_slices(input_paths)
# file level shuffle
d = d.shuffle(len(input_paths)).repeat()
# `cycle_length` is the number of parallel files that get read.
cycle_length = min(num_threads, len(input_paths))
d = d.apply(
tf.contrib.data.parallel_interleave(
tf.data.TFRecordDataset,
sloppy=is_training,