forked from tidyverse/ggplot2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest-scales.r
170 lines (127 loc) · 4.96 KB
/
test-scales.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
context("Scales")
test_that("buidling a plot does not affect its scales", {
dat <- data.frame(x = rnorm(20), y = rnorm(20))
p <- ggplot(dat, aes(x, y)) + geom_point()
expect_equal(length(p$scales$scales), 0)
ggplot_build(p)
expect_equal(length(p$scales$scales), 0)
})
test_that("ranges update only for variables listed in aesthetics", {
sc <- scale_alpha()
scale_train_df(sc, data.frame(alpha = 1:10))
expect_equal(sc$range$range, c(1, 10))
scale_train_df(sc, data.frame(alpha = 50))
expect_equal(sc$range$range, c(1, 50))
scale_train_df(sc, data.frame(beta = 100))
expect_equal(sc$range$range, c(1, 50))
scale_train_df(sc, data.frame())
expect_equal(sc$range$range, c(1, 50))
})
test_that("mapping works", {
sc <- scale_alpha(range = c(0, 1), na.value = 0)
scale_train_df(sc, data.frame(alpha = 1:10))
expect_equal(
scale_map_df(sc, data.frame(alpha = 1:10))[[1]],
round_any(seq(0, 1, length = 10), 1 / 500))
expect_equal(scale_map_df(sc, data.frame(alpha = NA))[[1]], 0)
expect_equal(
scale_map_df(sc, data.frame(alpha = c(-10, 11)))[[1]],
c(0, 0))
})
test_that("identity scale preserves input values", {
df <- data.frame(x = 1:3, z = letters[1:3])
p1 <- ggplot(df,
aes(x, z, colour = z, fill = z, shape = z, size = x, alpha = x)) +
geom_point() +
scale_colour_identity() +
scale_fill_identity() +
scale_shape_identity() +
scale_size_identity() +
scale_alpha_identity()
d1 <- pdata(p1)[[1]]
expect_that(d1$colour, equals(as.character(df$z)))
expect_that(d1$fill, equals(as.character(df$z)))
expect_that(d1$shape, equals(as.character(df$z)))
expect_that(d1$size, equals(as.numeric(df$z)))
expect_that(d1$alpha, equals(as.numeric(df$z)))
})
test_that("position scales updated by all position aesthetics", {
df <- data.frame(x = 1:3, y = 1:3)
aesthetics <- list(
aes(xend = x, yend = x),
aes(xmin = x, ymin = x),
aes(xmax = x, ymax = x),
aes(xintercept = x, yintercept = y)
)
base <- ggplot(df, aes(x = 1, y = 1)) + geom_point()
plots <- lapply(aesthetics, function(x) base %+% x)
ranges <- lapply(plots, pranges)
lapply(ranges, function(range) {
expect_that(range$x[[1]], equals(c(1, 3)))
expect_that(range$y[[1]], equals(c(1, 3)))
})
})
test_that("position scales generate after stats", {
df <- data.frame(x = factor(c(1, 1, 1)))
plot <- ggplot(df, aes(x)) + geom_bar()
ranges <- pranges(plot)
expect_that(ranges$x[[1]], equals(c("1")))
expect_that(ranges$y[[1]], equals(c(0, 3)))
})
test_that("oob affects position values", {
dat <- data.frame(x=c("a", "b", "c"), y=c(1, 5, 10))
base <- ggplot(dat, aes(x=x, y=y)) +
geom_bar(stat="identity") +
annotate("point", x = "a", y = c(-Inf, Inf))
y_scale <- function(limits, oob = censor) {
scale_y_continuous(limits = limits, oob = oob, expand = c(0, 0))
}
base + scale_y_continuous(limits=c(-0,5))
expect_warning(low_censor <- cdata(base + y_scale(c(0, 5), censor)),
"Removed 1 rows containing missing values")
expect_warning(mid_censor <- cdata(base + y_scale(c(3, 7), censor)),
"Removed 2 rows containing missing values")
low_squish <- cdata(base + y_scale(c(0, 5), squish))
mid_squish <- cdata(base + y_scale(c(3, 7), squish))
# Points are always at the top and bottom
expect_equal(low_censor[[2]]$y, c(0, 1))
expect_equal(mid_censor[[2]]$y, c(0, 1))
expect_equal(low_squish[[2]]$y, c(0, 1))
expect_equal(mid_squish[[2]]$y, c(0, 1))
# Bars depend on limits and oob
expect_equal(low_censor[[1]]$y, c(0.2, 1))
expect_equal(mid_censor[[1]]$y, c(0.5))
expect_equal(low_squish[[1]]$y, c(0.2, 1, 1))
expect_equal(mid_squish[[1]]$y, c(0, 0.5, 1))
})
test_that("scales looked for in appropriate place", {
xlabel <- function(x) ggplot_build(x)$panel$x_scales[[1]]$name
p0 <- qplot(mpg, wt, data = mtcars) + scale_x_continuous("0")
expect_equal(xlabel(p0), "0")
scale_x_continuous <- function(...) ggplot2::scale_x_continuous("1")
p1 <- qplot(mpg, wt, data = mtcars)
expect_equal(xlabel(p1), "1")
f <- function() {
scale_x_continuous <- function(...) ggplot2::scale_x_continuous("2")
qplot(mpg, wt, data = mtcars)
}
p2 <- f()
expect_equal(xlabel(p2), "2")
rm(scale_x_continuous)
p4 <- qplot(mpg, wt, data = mtcars)
expect_equal(xlabel(p4), NULL)
})
test_that("find_global searches in the right places", {
testenv <- new.env(parent = globalenv())
# This should find the scale object in the package environment
expect_identical(find_global("scale_colour_hue", testenv),
ggplot2::scale_colour_hue)
# Set an object with the same name in the environment
testenv$scale_colour_hue <- "foo"
# Now it should return the new object
expect_identical(find_global("scale_colour_hue", testenv), "foo")
# If we search in the empty env, we should end up with the object
# from the ggplot2 namespace
expect_identical(find_global("scale_colour_hue", emptyenv()),
ggplot2::scale_colour_hue)
})