forked from tidyverse/ggplot2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest-stats.r
134 lines (102 loc) · 4.53 KB
/
test-stats.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
context("Stats")
test_that("plot succeeds even if some computation fails", {
p1 <- ggplot(mtcars, aes(disp, mpg)) +
geom_point() +
facet_grid(gear ~ carb)
p2 <- p1 + geom_smooth()
b1 <- ggplot_build(p1)
expect_equal(length(b1$data), 1)
expect_warning(b2 <- ggplot_build(p2))
expect_equal(length(b2$data), 2)
})
# helper function for stat calc tests.
test_stat <- function(stat) {
stat$data <- transform(stat$data, PANEL = 1)
dat <- stat$compute_aesthetics(stat$data, ggplot())
dat <- add_group(dat)
stat$calc_statistic(dat, NULL)
}
context("stat-bin")
test_that("stat_sum", {
dat <- data.frame(x = c("a", "b", "c"), y = c(1, 5, 10))
# Should get a message when mapping/setting y and also using stat_bin
expect_message(p <- ggplot_build(ggplot(dat, aes(x=x, y=y)) + geom_bar()),
"Mapping a variable to y and also using stat=\"bin\"")
expect_message(p <- ggplot_build(ggplot(dat, aes(x=x, y=y)) + geom_bar(stat="bin")),
"Mapping a variable to y and also using stat=\"bin\"")
expect_message(p <- ggplot_build(ggplot(dat, aes(x=x)) + geom_bar(y=5)),
"Mapping a variable to y and also using stat=\"bin\"")
# This gives an error and a message (it would probably be OK if just one
# of these happened, but this test looks for both)
dat2 <- data.frame(x = c("a", "b", "c", "a", "b", "c"), y = c(1, 5, 10, 2, 3, 4))
expect_message(expect_error(
p <- ggplot_build(ggplot(dat2, aes(x=x, y=y)) + geom_bar())))
})
context("stat-sum")
test_that("stat_sum", {
d <- diamonds[1:1000, ]
ret <- test_stat(stat_sum(aes(x = cut, y = clarity), data = d))
expect_equal(dim(ret), c(38, 5))
expect_equal(sum(ret$n), nrow(d))
expect_true(all(ret$prop == 1))
ret <- test_stat(stat_sum(aes(x = cut, y = clarity, group = 1), data = d))
expect_equal(dim(ret), c(38, 5))
expect_equal(sum(ret$n), nrow(d))
expect_equal(sum(ret$prop), 1)
ret <- test_stat(stat_sum(aes(x = cut, y = clarity, group = cut), data = d))
expect_equal(dim(ret), c(38, 5))
expect_equal(sum(ret$n), nrow(d))
expect_true(all(ddply(ret, .(x), summarise, prop = sum(prop))$prop == 1))
ret <- test_stat(stat_sum(aes(x = cut, y = clarity, group = cut, colour = cut), data = d))
expect_equal(dim(ret), c(38, 6))
expect_equal(ret$x, ret$colour)
expect_equal(sum(ret$n), nrow(d))
expect_true(all(ddply(ret, .(x), summarise, prop = sum(prop))$prop == 1))
ret <- test_stat(stat_sum(aes(x = cut, y = clarity, group = clarity), data = d))
expect_equal(dim(ret), c(38, 5))
expect_equal(sum(ret$n), nrow(d))
expect_true(all(ddply(ret, .(y), summarise, prop = sum(prop))$prop == 1))
ret <- test_stat(stat_sum(aes(x = cut, y = clarity, group = clarity, colour = cut), data = d))
expect_equal(dim(ret), c(38, 6))
expect_equal(ret$x, ret$colour)
expect_equal(sum(ret$n), nrow(d))
expect_true(all(ddply(ret, .(y), summarise, prop = sum(prop))$prop == 1))
ret <- test_stat(stat_sum(aes(x = cut, y = clarity, group = 1, weight = price), data = d))
expect_equal(dim(ret), c(38, 5))
expect_equal(sum(ret$n), sum(d$price))
expect_equal(sum(ret$prop), 1)
})
# helper function for stat calc tests.
test_stat_scale <- function(stat, scale) {
stat$data <- transform(stat$data, PANEL = 1)
dat <- stat$compute_aesthetics(stat$data, ggplot())
dat <- add_group(dat)
stat$calc_statistic(dat, scale)
}
context("stat-bin2d")
test_that("stat-bin2d", {
d <- diamonds[1:1000,]
full_scales <- list(x = scale_x_continuous(limits = range(d$carat, na.rm=TRUE)),
y = scale_y_continuous(limits = range(d$depth, na.rm=TRUE)))
ret <- test_stat_scale(stat_bin2d(aes(x = carat, y = depth), data=d), full_scales)
expect_equal(dim(ret), c(191,12))
d$carat[1] <- NA
d$depth[2] <- NA
full_scales <- list(x = scale_x_continuous(limits = range(d$carat, na.rm=TRUE)),
y = scale_y_continuous(limits = range(d$depth, na.rm=TRUE)))
ret <- test_stat_scale(stat_bin2d(aes(x = carat, y = depth), data=d), full_scales)
expect_equal(dim(ret), c(191,12))
})
context("stat-density2d")
test_that("stat-density2d", {
full_scales <- list(x = scale_x_continuous(limits=c(1,6)),
y = scale_y_continuous(limits=c(5,40)))
ret <- test_stat_scale(stat_density2d(aes(x = wt, y = mpg), data = mtcars), full_scales)
# Check that the contour data goes beyond data range.
# The specific values below are sort of arbitrary; but they go beyond the range
# of the data
expect_true(min(ret$x) < 1.2)
expect_true(max(ret$x) > 5.8)
expect_true(min(ret$y) < 8)
expect_true(max(ret$y) > 35)
})