forked from tidyverse/ggplot2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeom_histogram.Rd
145 lines (126 loc) · 5.15 KB
/
geom_histogram.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
\name{geom_histogram}
\alias{geom_histogram}
\title{Histogram}
\usage{
geom_histogram(mapping = NULL, data = NULL, stat = "bin",
position = "stack", ...)
}
\arguments{
\item{mapping}{The aesthetic mapping, usually constructed
with \code{\link{aes}} or \code{\link{aes_string}}. Only
needs to be set at the layer level if you are overriding
the plot defaults.}
\item{data}{A layer specific dataset - only needed if you
want to override the plot defaults.}
\item{stat}{The statistical transformation to use on the
data for this layer.}
\item{position}{The position adjustment to use for
overlappling points on this layer}
\item{...}{other arguments passed on to
\code{\link{layer}}. This can include aesthetics whose
values you want to set, not map. See \code{\link{layer}}
for more details.}
}
\description{
\code{geom_histogram} is an alias for
\code{\link{geom_bar}} plus \code{\link{stat_bin}} so you
will need to look at the documentation for those objects
to get more information about the parameters.
}
\details{
By default, \code{stat_bin} uses 30 bins - this is not a
good default, but the idea is to get you experimenting
with different binwidths. You may need to look at a few
to uncover the full story behind your data.
}
\section{Aesthetics}{
\Sexpr[results=rd,stage=build]{ggplot2:::rd_aesthetics("geom",
"histogram")}
}
\examples{
\donttest{
set.seed(5689)
movies <- movies[sample(nrow(movies), 1000), ]
# Simple examples
qplot(rating, data=movies, geom="histogram")
qplot(rating, data=movies, weight=votes, geom="histogram")
qplot(rating, data=movies, weight=votes, geom="histogram", binwidth=1)
qplot(rating, data=movies, weight=votes, geom="histogram", binwidth=0.1)
# More complex
m <- ggplot(movies, aes(x=rating))
m + geom_histogram()
m + geom_histogram(aes(y = ..density..)) + geom_density()
m + geom_histogram(binwidth = 1)
m + geom_histogram(binwidth = 0.5)
m + geom_histogram(binwidth = 0.1)
# Add aesthetic mappings
m + geom_histogram(aes(weight = votes))
m + geom_histogram(aes(y = ..count..))
m + geom_histogram(aes(fill = ..count..))
# Change scales
m + geom_histogram(aes(fill = ..count..)) +
scale_fill_gradient("Count", low = "green", high = "red")
# Often we don't want the height of the bar to represent the
# count of observations, but the sum of some other variable.
# For example, the following plot shows the number of movies
# in each rating.
qplot(rating, data=movies, geom="bar", binwidth = 0.1)
# If, however, we want to see the number of votes cast in each
# category, we need to weight by the votes variable
qplot(rating, data=movies, geom="bar", binwidth = 0.1,
weight=votes, ylab = "votes")
m <- ggplot(movies, aes(x = votes))
# For transformed scales, binwidth applies to the transformed data.
# The bins have constant width on the transformed scale.
m + geom_histogram() + scale_x_log10()
m + geom_histogram(binwidth = 1) + scale_x_log10()
m + geom_histogram() + scale_x_sqrt()
m + geom_histogram(binwidth = 10) + scale_x_sqrt()
# For transformed coordinate systems, the binwidth applies to the
# raw data. The bins have constant width on the original scale.
# Using log scales does not work here, because the first
# bar is anchored at zero, and so when transformed becomes negative
# infinity. This is not a problem when transforming the scales, because
# no observations have 0 ratings.
m + geom_histogram(origin = 0) + coord_trans(x = "log10")
# Use origin = 0, to make sure we don't take sqrt of negative values
m + geom_histogram(origin = 0) + coord_trans(x = "sqrt")
m + geom_histogram(origin = 0, binwidth = 1000) + coord_trans(x = "sqrt")
# You can also transform the y axis. Remember that the base of the bars
# has value 0, so log transformations are not appropriate
m <- ggplot(movies, aes(x = rating))
m + geom_histogram(binwidth = 0.5) + scale_y_sqrt()
m + geom_histogram(binwidth = 0.5) + scale_y_reverse()
# Set aesthetics to fixed value
m + geom_histogram(colour = "darkgreen", fill = "white", binwidth = 0.5)
# Use facets
m <- m + geom_histogram(binwidth = 0.5)
m + facet_grid(Action ~ Comedy)
# Often more useful to use density on the y axis when facetting
m <- m + aes(y = ..density..)
m + facet_grid(Action ~ Comedy)
m + facet_wrap(~ mpaa)
# Multiple histograms on the same graph
# see ?position, ?position_fill, etc for more details.
set.seed(6298)
diamonds_small <- diamonds[sample(nrow(diamonds), 1000), ]
ggplot(diamonds_small, aes(x=price)) + geom_bar()
hist_cut <- ggplot(diamonds_small, aes(x=price, fill=cut))
hist_cut + geom_bar() # defaults to stacking
hist_cut + geom_bar(position="fill")
hist_cut + geom_bar(position="dodge")
# This is easy in ggplot2, but not visually effective. It's better
# to use a frequency polygon or density plot. Like this:
ggplot(diamonds_small, aes(price, ..density.., colour = cut)) +
geom_freqpoly(binwidth = 1000)
# Or this:
ggplot(diamonds_small, aes(price, colour = cut)) +
geom_density()
# Or if you want to be fancy, maybe even this:
ggplot(diamonds_small, aes(price, fill = cut)) +
geom_density(alpha = 0.2)
# Which looks better when the distributions are more distinct
ggplot(diamonds_small, aes(depth, fill = cut)) +
geom_density(alpha = 0.2) + xlim(55, 70)
}
}