-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathconvNet-LeNet-MINST.py
275 lines (243 loc) · 8.29 KB
/
convNet-LeNet-MINST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import numpy as np
import matplotlib.pyplot as plt
import time
np.random.seed(1111) # for reproducibility
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.utils import np_utils
from keras.regularizers import l2, l1, l1l2, activity_l2, activity_l1
from keras.utils.visualize_util import plot
from keras.optimizers import SGD, Adam, RMSprop
from keras.callbacks import EarlyStopping
import inspect
#
# save the graph produced by the experiment
#
def print_Graph(
# Training log
fitlog,
# elapsed time
elapsed,
# input parameters for the experiment
args,
# input values for the experiment
values):
experiment_label = "\n".join(['%s=%s' % (i, values[i]) for i in args])
experiment_file = experiment_label+"-Time= %02d" % elapsed + "sec"
experiment_file = experiment_file.replace("\n", "-")+'.png'
fig = plt.figure(figsize=(6, 3))
plt.plot(fitlog.history["val_acc"])
plt.title('val_accuracy')
plt.ylabel('val_accuracy')
plt.xlabel('iteration')
fig.text(.7,.15,experiment_label, size='6')
plt.savefig(experiment_file, format="png")
#
# A LeNet-like convnet for classifying MINST handwritten characters 28x28
#
def convNet_LeNet(
VERBOSE=1,
# normlize
NORMALIZE = True,
# Network Parameters
BATCH_SIZE = 128,
NUM_EPOCHS = 20,
# Number of convolutional filters
NUM_FILTERS = 32,
# side length of maxpooling square
NUM_POOL = 2,
# side length of convolution square
NUM_CONV = 3,
# dropout rate for regularization
DROPOUT_RATE = 0.5,
# hidden number of neurons first layer
NUM_HIDDEN = 128,
# validation data
VALIDATION_SPLIT=0.2, # 20%
# optimizer used
OPTIMIZER = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True),
# regularization
REGULARIZER = l2(0.01)
):
# Output classes, number of MINST DIGITS
NUM_CLASSES = 10
# Shape of an MINST digit image
SHAPE_X, SHAPE_Y = 28, 28
# Channels on MINST
IMG_CHANNELS = 1
# LOAD the MINST DATA split in training and test data
(X_train, Y_train), (X_test, Y_test) = mnist.load_data()
X_train = X_train.reshape(X_train.shape[0], 1, SHAPE_X, SHAPE_Y)
X_test = X_test.reshape(X_test.shape[0], 1, SHAPE_X, SHAPE_Y)
# convert in float32 representation for GPU computation
X_train = X_train.astype("float32")
X_test = X_test.astype("float32")
if (NORMALIZE):
# NORMALIZE each pixerl by dividing by max_value=255
X_train /= 255
X_test /= 255
print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')
# KERAS needs to represent each output class into OHE representation
Y_train = np_utils.to_categorical(Y_train, NUM_CLASSES)
Y_test = np_utils.to_categorical(Y_test, NUM_CLASSES)
nn = Sequential()
#FIRST LAYER OF CONVNETS, POOLING, DROPOUT
# apply a NUM_CONV x NUM_CONF convolution with NUM_FILTERS output
# for the first layer it is also required to define the input shape
# activation function is rectified linear
nn.add(Convolution2D(NUM_FILTERS, NUM_CONV, NUM_CONV,
input_shape=(IMG_CHANNELS, SHAPE_X, SHAPE_Y) ))
nn.add(Activation('relu'))
nn.add(Convolution2D(NUM_FILTERS, NUM_CONV, NUM_CONV))
nn.add(Activation('relu'))
nn.add(MaxPooling2D(pool_size = (NUM_POOL, NUM_POOL)))
nn.add(Dropout(DROPOUT_RATE))
#SECOND LAYER OF CONVNETS, POOLING, DROPOUT
# apply a NUM_CONV x NUM_CONF convolution with NUM_FILTERS output
nn.add(Convolution2D( NUM_FILTERS, NUM_CONV, NUM_CONV))
nn.add(Activation('relu'))
nn.add(Convolution2D(NUM_FILTERS, NUM_CONV, NUM_CONV))
nn.add(Activation('relu'))
nn.add(MaxPooling2D(pool_size = (NUM_POOL, NUM_POOL) ))
nn.add(Dropout(DROPOUT_RATE))
# FLATTEN the shape for dense connections
nn.add(Flatten())
# FIRST HIDDEN LAYER OF DENSE NETWORK
nn.add(Dense(NUM_HIDDEN))
nn.add(Activation('relu'))
nn.add(Dropout(DROPOUT_RATE))
# OUTFUT LAYER with NUM_CLASSES OUTPUTS
# ACTIVATION IS SOFTMAX, REGULARIZATION IS L2
nn.add(Dense(NUM_CLASSES, W_regularizer=REGULARIZER))
nn.add(Activation('softmax') )
#summary
nn.summary()
#plot the model
plot(nn)
# set an early-stopping value
early_stopping = EarlyStopping(monitor='val_loss', patience=2)
# COMPILE THE MODEL
# loss_function is categorical_crossentropy
# optimizer is parametric
nn.compile(loss='categorical_crossentropy',
optimizer=OPTIMIZER, metrics=["accuracy"])
start = time.time()
# FIT THE MODEL WITH VALIDATION DATA
fitlog = nn.fit(X_train, Y_train, \
batch_size=BATCH_SIZE, nb_epoch=NUM_EPOCHS, \
verbose=VERBOSE, validation_split=VALIDATION_SPLIT, \
callbacks=[early_stopping])
elapsed = time.time() - start
# Test the network
results = nn.evaluate(X_test, Y_test, verbose=VERBOSE)
print('accuracy:', results[1])
# just to get the list of input parameters and their value
frame = inspect.currentframe()
args, _, _, values = inspect.getargvalues(frame)
# used for printing pretty arguments
print_Graph(fitlog, elapsed, args, values)
return fitlog
# 2 epochs
#log = convNet_LeNet(OPTIMIZER = 'Adam', NUM_EPOCHS=2)
#print(log.history)
# 20 epochs
#log = convNet_LeNet(OPTIMIZER = 'Adam', NUM_EPOCHS=20)
#print(log.history)
# default optimizer = SGD
#log = convNet_LeNet(NUM_EPOCHS=20)
#print(log.history)
# default optimizer = RMSProp
#log = convNet_LeNet(OPTIMIZER=RMSprop(), NUM_EPOCHS=20)
#print(log.history)
## default optimizer
#log = convNet_LeNet(OPTIMIZER='Adam', DROPOUT_RATE=0)
#print(log.history)
# default optimizer
#log = convNet_LeNet(OPTIMIZER='Adam', DROPOUT_RATE=0.1)
#print(log.history)
# default optimizer
#log = convNet_LeNet(OPTIMIZER='Adam', DROPOUT_RATE=0.2)
#print(log.history)
# default optimizer
#log = convNet_LeNet(OPTIMIZER='Adam', DROPOUT_RATE=0.4)
#print(log.history)
# default optimizer
#log = convNet_LeNet(OPTIMIZER='Adam', BATCH_SIZE=64)
#print(log.history)
#log = convNet_LeNet(OPTIMIZER='Adam', BATCH_SIZE=128)
#print(log.history)
#log = convNet_LeNet(OPTIMIZER='Adam', BATCH_SIZE=256)
#print(log.history)
#log = convNet_LeNet(OPTIMIZER='Adam', BATCH_SIZE=512)
#print(log.history)
#log = convNet_LeNet(OPTIMIZER='Adam', BATCH_SIZE=1024)
#print(log.history)
#log = convNet_LeNet(OPTIMIZER='Adam', BATCH_SIZE=2048)
#print(log.history)
#
#log = convNet_LeNet(OPTIMIZER='Adam', BATCH_SIZE=4096)
#print(log.history)
#log = convNet_LeNet(OPTIMIZER='Adam', VALIDATION_SPLIT=0.8)
#print(log.history)
#log = convNet_LeNet(OPTIMIZER='Adam', VALIDATION_SPLIT=0.6)
#print(log.history)
#log = convNet_LeNet(OPTIMIZER='Adam', VALIDATION_SPLIT=0.4)
#print(log.history)
#log = convNet_LeNet(OPTIMIZER='Adam', VALIDATION_SPLIT=0.2)
#print(log.history)
#log = convNet_LeNet(OPTIMIZER='Adam', VALIDATION_SPLIT=0.2, NORMALIZE=False)
#print(log.history)
#log = convNet_LeNet(OPTIMIZER='Adam', VALIDATION_SPLIT=0.2, NUM_FILTERS=64)
#print(log.history)
#log = convNet_LeNet(OPTIMIZER='Adam', NUM_FILTERS=128)
#print(log.history)
#log = convNet_LeNet(OPTIMIZER='Adam', NUM_FILTERS=256)
#print(log.history)
# x log = convNet_LeNet(OPTIMIZER='Adam', NUM_POOL=4)
# x print(log.history)
# x log = convNet_LeNet(OPTIMIZER='Adam', NUM_POOL=8)
# x print(log.history)
#log = convNet_LeNet(OPTIMIZER='Adam', NUM_CONV=4)
#print(log.history)
# x log = convNet_LeNet(OPTIMIZER='Adam', NUM_CONV=8)
# X print(log.history)
#log = convNet_LeNet(OPTIMIZER='Adam', NUM_HIDDEN=32)
#print(log.history)
#log = convNet_LeNet(OPTIMIZER='Adam', NUM_HIDDEN=64)
#print(log.history)
#log = convNet_LeNet(OPTIMIZER='Adam', NUM_HIDDEN=256)
#print(log.history)
#log = convNet_LeNet(OPTIMIZER='Adam', NUM_HIDDEN=512)
#print(log.history)
#log = convNet_LeNet(OPTIMIZER='Adam', NUM_HIDDEN=1024)
#print(log.history)
#log = convNet_LeNet(OPTIMIZER='Adam', REGULARIZER=l1(0.01))
#print(log.history)
regular = l1l2(l1=0.01, l2=0.01)
log = convNet_LeNet(OPTIMIZER='Adam', REGULARIZER=regular)
print(log.history)
# VERBOSE=1,
# # normlize
# NORMALIZE = True,
# # Network Parameters
# BATCH_SIZE = 128,
# NUM_EPOCHS = 100,
# # Number of convolutional filters
# NUM_FILTERS = 32,
# # side length of maxpooling square
# NUM_POOL = 2,
# # side length of convolution square
# NUM_CONV = 3,
# # dropout rate for regularization
# DROPOUT_RATE = 0.5,
# # hidden number of neurons first layer
# N_HIDDEN = 128,
# # validation data
# VALIDATION_SPLIT=0.2, # 20%
# # optimizer used
# OPTIMIZER = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
#plt.show()