-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlearner_ft.py
executable file
·294 lines (248 loc) · 12.8 KB
/
learner_ft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
from fairseq_manual.data_utils import compute_mask_indices
from hydra.utils import instantiate
import torch
from torch.optim import AdamW
from pytorch_lightning import LightningModule
import random
from schedulers.warmup_cosine import WarmupCosineScheduler
from espnet.asr.asr_utils import add_results_to_json, torch_load
from espnet.nets.batch_beam_search import BatchBeamSearch
from espnet.nets.pytorch_backend.e2e_asr_transformer import E2E
from espnet.nets.pytorch_backend.lm.transformer import TransformerLM
from espnet.nets.pytorch_backend.nets_utils import make_non_pad_mask
from espnet.nets.scorers.length_bonus import LengthBonus
from metrics import WER
from utils.utils import ids_to_str, set_requires_grad, UNIGRAM1000_LIST, get_param_groups_ft
class SSLLearner(LightningModule):
def __init__(self, cfg):
super().__init__()
self.save_hyperparameters(cfg)
self.cfg = cfg
if cfg.compile_model:
self.model = torch.compile(E2E(1049, cfg.model.backbone))
else:
self.model = E2E(1049, cfg.model.backbone)
if cfg.model.pretrained_model_path:
print("Load pretrained model weights")
ckpt = torch.load(cfg.model.pretrained_model_path, map_location=lambda storage, loc: storage)
if cfg.model.transfer_only_encoder:
ckpt = {k[39:]: v for k, v in ckpt.items() if k.startswith('model._orig_mod.model.backbone.encoder')}
ckpt = {k: v for k, v in ckpt.items() if not k.startswith("after_norm")}
self.model.encoder.load_state_dict(ckpt, strict=False)
else:
self.model.load_state_dict(ckpt)
if cfg.debug.log_gradients:
self.logger.experiment.watch(self.model, log="gradients")
self.ignore_id = -1
self.beam_search_video = self.get_beam_search(self.model)
self.beam_search_audio = self.get_beam_search(self.model)
self.beam_search_av = self.get_beam_search(self.model)
self.wer_video = WER()
self.wer_audio = WER()
self.wer_av = WER()
def get_beam_search(self, model):
token_list = UNIGRAM1000_LIST
odim = len(token_list)
self.token_list = token_list
scorers = model.scorers()
if self.cfg.decode.lm_weight and self.cfg.model.pretrained_lm_path:
lm = TransformerLM(len(token_list), self.cfg.model.language_model)
set_requires_grad(lm, False)
print("Load pretrained language model weights")
torch_load(self.cfg.model.pretrained_lm_path, lm)
else:
lm = None
scorers["lm"] = lm
scorers["length_bonus"] = LengthBonus(len(token_list))
weights = dict(
decoder=1.0 - self.cfg.decode.ctc_weight,
ctc=self.cfg.decode.ctc_weight,
lm=self.cfg.decode.lm_weight,
length_bonus=self.cfg.decode.penalty,
)
beam_search = BatchBeamSearch(
beam_size=self.cfg.decode.beam_size,
vocab_size=len(token_list),
weights=weights,
scorers=scorers,
sos=odim - 1,
eos=odim - 1,
token_list=token_list,
pre_beam_score_key=None if self.cfg.decode.ctc_weight == 1.0 else "decoder",
)
return beam_search
def get_mask(self, data, padding_mask, mask_prob, mask_length):
B, C, T, H, W = data["video"].shape
mask = ~compute_mask_indices(
(B, T),
~padding_mask,
mask_prob,
mask_length,
min_masks=1
)
return torch.from_numpy(mask).to(data["video"].device)
def training_step(self, data, batch_idx):
label = data["label"].squeeze(1)
video = data["video"].squeeze(1)
audio = data["audio"].transpose(1, 2)
padding_mask = make_non_pad_mask(data["video_lengths"]).to(data["video"].device)
x_v, x_a, x_av, _, _ = self.model.encoder(video, audio, padding_mask.unsqueeze(-2))
loss_ctc_v = self.model.ctc_v(x_v, padding_mask.sum(-1).squeeze(-1), label)
loss_ctc_a = self.model.ctc_a(x_a, padding_mask.sum(-1).squeeze(-1), label)
loss_ctc_av = self.model.ctc_av(x_av, padding_mask.sum(-1).squeeze(-1), label)
loss_att_v, loss_att_a, loss_att_av, acc_v, acc_a, acc_av = self.model.forward_labelled(
x_v, x_a, x_av, padding_mask.unsqueeze(-2), label
)
self.log("loss_att_v_l", loss_att_v, on_step=True, on_epoch=True, prog_bar=True, batch_size=len(label), sync_dist=True)
self.log("loss_att_a_l", loss_att_a, on_step=True, on_epoch=True, prog_bar=True, batch_size=len(label), sync_dist=True)
self.log("loss_att_av_l", loss_att_av, on_step=True, on_epoch=True, prog_bar=True, batch_size=len(label), sync_dist=True)
self.log("loss_ctc_v_l", loss_ctc_v, on_step=True, on_epoch=True, prog_bar=True, batch_size=len(label), sync_dist=True)
self.log("loss_ctc_a_l", loss_ctc_a, on_step=True, on_epoch=True, prog_bar=True, batch_size=len(label), sync_dist=True)
self.log("loss_ctc_av_l", loss_ctc_av, on_step=True, on_epoch=True, prog_bar=True, batch_size=len(label), sync_dist=True)
self.log("acc_v_l", acc_v, on_step=False, on_epoch=True, batch_size=len(label), sync_dist=True)
self.log("acc_a_l", acc_a, on_step=False, on_epoch=True, batch_size=len(label), sync_dist=True)
self.log("acc_av_l", acc_av, on_step=False, on_epoch=True, batch_size=len(label), sync_dist=True)
loss = (1-self.cfg.model.ctc_rel_weight)*self.cfg.model.v_rel_weight*loss_att_v
loss += (1-self.cfg.model.ctc_rel_weight)*(1-self.cfg.model.v_rel_weight)*loss_att_a
loss += (1-self.cfg.model.ctc_rel_weight)*(1-self.cfg.model.v_rel_weight)*loss_att_av
loss += self.cfg.model.ctc_rel_weight*self.cfg.model.v_rel_weight*loss_ctc_v
loss += self.cfg.model.ctc_rel_weight*(1-self.cfg.model.v_rel_weight)*loss_ctc_a
loss += self.cfg.model.ctc_rel_weight*(1-self.cfg.model.v_rel_weight)*loss_ctc_av
self.log('monitoring_step', self.trainer.global_step) # this is to save the last k checkpoints
return loss
def shared_val_test_step(self, data):
video, audio, label = data["video"], data["audio"], data["label"]
padding_mask_v = make_non_pad_mask(data["video_lengths"]).to(data["video"].device).unsqueeze(-2)
features_v, features_a, features_av, _, _ = self.model.encoder(
video.squeeze(1), audio.transpose(1, 2), padding_mask_v
)
loss_ctc_v = self.model.ctc_v(
features_v, torch.tensor(data["video_lengths"], device=features_v.device), data["label"].squeeze(1)
)
loss_ctc_a = self.model.ctc_a(
features_a, torch.tensor(data["video_lengths"], device=features_a.device), data["label"].squeeze(1)
)
loss_ctc_av = self.model.ctc_av(
features_av, torch.tensor(data["video_lengths"], device=features_a.device), data["label"].squeeze(1)
)
acc_video, acc_audio, acc_av = self.model.forward_labelled(
features_v, features_a, features_av, padding_mask_v, label
)[-3:]
self.log("loss_ctc_v_val", loss_ctc_v, batch_size=len(label), sync_dist=True)
self.log("loss_ctc_a_val", loss_ctc_a, batch_size=len(label), sync_dist=True)
self.log("loss_ctc_av_val", loss_ctc_av, batch_size=len(label), sync_dist=True)
self.log("acc_video_val", acc_video, batch_size=len(label), sync_dist=True)
self.log("acc_audio_val", acc_audio, batch_size=len(label), sync_dist=True)
self.log("acc_av_val", acc_av, batch_size=len(label), sync_dist=True)
def validation_step(self, data, batch_idx):
self.shared_val_test_step(data)
def calculate_wer(self, video, audio, padding_mask, labels):
labels = labels.squeeze(1)
for vid, aud, label, mask in zip(video, audio, labels, padding_mask):
feat_v, feat_a, feat_av, _, _ = self.model.encoder(
vid.unsqueeze(0), aud.unsqueeze(0), mask.unsqueeze(0).unsqueeze(-2)
)
nbest_hyps_v = self.beam_search_video(
x=feat_v.squeeze(0),
modality="v",
maxlenratio=self.cfg.decode.maxlenratio,
minlenratio=self.cfg.decode.minlenratio
)
nbest_hyps_a = self.beam_search_audio(
x=feat_a.squeeze(0),
modality="a",
maxlenratio=self.cfg.decode.maxlenratio,
minlenratio=self.cfg.decode.minlenratio
)
nbest_hyps_av = self.beam_search_av(
x=feat_av.squeeze(0),
modality="av",
maxlenratio=self.cfg.decode.maxlenratio,
minlenratio=self.cfg.decode.minlenratio
)
nbest_hyps_v = [
h.asdict() for h in nbest_hyps_v[: min(len(nbest_hyps_v), 1)]
]
nbest_hyps_a = [
h.asdict() for h in nbest_hyps_a[: min(len(nbest_hyps_a), 1)]
]
nbest_hyps_av = [
h.asdict() for h in nbest_hyps_av[: min(len(nbest_hyps_av), 1)]
]
transcription_v = add_results_to_json(nbest_hyps_v, self.token_list)
transcription_v = transcription_v.replace("<eos>", "")
transcription_a = add_results_to_json(nbest_hyps_a, self.token_list)
transcription_a = transcription_a.replace("<eos>", "")
transcription_av = add_results_to_json(nbest_hyps_av, self.token_list)
transcription_av = transcription_av.replace("<eos>", "")
label = label[label != self.ignore_id]
groundtruth = ids_to_str(label, self.token_list)
groundtruth = groundtruth.replace("▁", " ").strip()
transcription_v = transcription_v.replace("▁", " ").strip()
transcription_a = transcription_a.replace("▁", " ").strip()
transcription_av = transcription_av.replace("▁", " ").strip()
self.wer_video.update(transcription_v, groundtruth)
self.wer_audio.update(transcription_a, groundtruth)
self.wer_av.update(transcription_av, groundtruth)
def test_step(self, data, batch_idx):
lengths = torch.tensor(data["video_lengths"], device=data["video"].device)
padding_mask = make_non_pad_mask(lengths).to(lengths.device)
self.calculate_wer(
data["video"].squeeze(1),
data["audio"].transpose(1, 2),
padding_mask,
data["label"],
)
print(self.wer_video.compute())
print(self.wer_audio.compute())
print(self.wer_av.compute())
def on_test_epoch_end(self):
wer_video = self.wer_video.compute()
wer_audio = self.wer_audio.compute()
wer_av = self.wer_av.compute()
print(wer_video)
print(wer_audio)
print(wer_av)
self.log("wer_video", wer_video)
self.log("wer_audio", wer_audio)
self.log("wer_av", wer_av)
self.wer_video.reset()
self.wer_audio.reset()
self.wer_av.reset()
def on_train_epoch_start(self):
sampler = self.trainer.train_dataloader.batch_sampler
if hasattr(sampler, "set_epoch"):
sampler.set_epoch(self.current_epoch)
return super().on_train_epoch_start()
# potentially want different schedulers for predictors and rest of model
def configure_optimizers(self):
param_groups = get_param_groups_ft(
self.model,
self.cfg.model.backbone.elayers,
self.cfg.optimizer.base_lr,
self.cfg.optimizer.base_lr_other,
self.cfg.optimizer.lr_decay_rate,
min_lr=self.cfg.optimizer.min_lr,
)
optimizer = AdamW(
param_groups, weight_decay=self.cfg.optimizer.weight_decay, betas=self.cfg.optimizer.betas
)
warmup_epochs = self.cfg.optimizer.warmup_epochs
train_len = len(self.trainer.datamodule.train_dataloader())
scheduler = {
'scheduler': WarmupCosineScheduler(
optimizer,
warmup_epochs,
self.cfg.trainer.max_epochs,
train_len,
self.cfg.optimizer.cosine_decay,
excluded_group=None,
),
'interval': 'step',
'frequency': 1
}
self.momentum_scheduler = instantiate(
self.cfg.model.momentum_scheduler,
iter_per_epoch=train_len,
)
return [optimizer], [scheduler]