forked from python/cpython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
_pydecimal.py
6408 lines (5453 loc) · 223 KB
/
_pydecimal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) 2004 Python Software Foundation.
# All rights reserved.
# Written by Eric Price <eprice at tjhsst.edu>
# and Facundo Batista <facundo at taniquetil.com.ar>
# and Raymond Hettinger <python at rcn.com>
# and Aahz <aahz at pobox.com>
# and Tim Peters
# This module should be kept in sync with the latest updates of the
# IBM specification as it evolves. Those updates will be treated
# as bug fixes (deviation from the spec is a compatibility, usability
# bug) and will be backported. At this point the spec is stabilizing
# and the updates are becoming fewer, smaller, and less significant.
"""
This is an implementation of decimal floating point arithmetic based on
the General Decimal Arithmetic Specification:
http://speleotrove.com/decimal/decarith.html
and IEEE standard 854-1987:
http://en.wikipedia.org/wiki/IEEE_854-1987
Decimal floating point has finite precision with arbitrarily large bounds.
The purpose of this module is to support arithmetic using familiar
"schoolhouse" rules and to avoid some of the tricky representation
issues associated with binary floating point. The package is especially
useful for financial applications or for contexts where users have
expectations that are at odds with binary floating point (for instance,
in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead
of 0.0; Decimal('1.00') % Decimal('0.1') returns the expected
Decimal('0.00')).
Here are some examples of using the decimal module:
>>> from decimal import *
>>> setcontext(ExtendedContext)
>>> Decimal(0)
Decimal('0')
>>> Decimal('1')
Decimal('1')
>>> Decimal('-.0123')
Decimal('-0.0123')
>>> Decimal(123456)
Decimal('123456')
>>> Decimal('123.45e12345678')
Decimal('1.2345E+12345680')
>>> Decimal('1.33') + Decimal('1.27')
Decimal('2.60')
>>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41')
Decimal('-2.20')
>>> dig = Decimal(1)
>>> print(dig / Decimal(3))
0.333333333
>>> getcontext().prec = 18
>>> print(dig / Decimal(3))
0.333333333333333333
>>> print(dig.sqrt())
1
>>> print(Decimal(3).sqrt())
1.73205080756887729
>>> print(Decimal(3) ** 123)
4.85192780976896427E+58
>>> inf = Decimal(1) / Decimal(0)
>>> print(inf)
Infinity
>>> neginf = Decimal(-1) / Decimal(0)
>>> print(neginf)
-Infinity
>>> print(neginf + inf)
NaN
>>> print(neginf * inf)
-Infinity
>>> print(dig / 0)
Infinity
>>> getcontext().traps[DivisionByZero] = 1
>>> print(dig / 0)
Traceback (most recent call last):
...
...
...
decimal.DivisionByZero: x / 0
>>> c = Context()
>>> c.traps[InvalidOperation] = 0
>>> print(c.flags[InvalidOperation])
0
>>> c.divide(Decimal(0), Decimal(0))
Decimal('NaN')
>>> c.traps[InvalidOperation] = 1
>>> print(c.flags[InvalidOperation])
1
>>> c.flags[InvalidOperation] = 0
>>> print(c.flags[InvalidOperation])
0
>>> print(c.divide(Decimal(0), Decimal(0)))
Traceback (most recent call last):
...
...
...
decimal.InvalidOperation: 0 / 0
>>> print(c.flags[InvalidOperation])
1
>>> c.flags[InvalidOperation] = 0
>>> c.traps[InvalidOperation] = 0
>>> print(c.divide(Decimal(0), Decimal(0)))
NaN
>>> print(c.flags[InvalidOperation])
1
>>>
"""
__all__ = [
# Two major classes
'Decimal', 'Context',
# Named tuple representation
'DecimalTuple',
# Contexts
'DefaultContext', 'BasicContext', 'ExtendedContext',
# Exceptions
'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero',
'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow',
'FloatOperation',
# Exceptional conditions that trigger InvalidOperation
'DivisionImpossible', 'InvalidContext', 'ConversionSyntax', 'DivisionUndefined',
# Constants for use in setting up contexts
'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING',
'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP',
# Functions for manipulating contexts
'setcontext', 'getcontext', 'localcontext',
# Limits for the C version for compatibility
'MAX_PREC', 'MAX_EMAX', 'MIN_EMIN', 'MIN_ETINY',
# C version: compile time choice that enables the thread local context
'HAVE_THREADS'
]
__xname__ = __name__ # sys.modules lookup (--without-threads)
__name__ = 'decimal' # For pickling
__version__ = '1.70' # Highest version of the spec this complies with
# See http://speleotrove.com/decimal/
__libmpdec_version__ = "2.4.2" # compatible libmpdec version
import math as _math
import numbers as _numbers
import sys
try:
from collections import namedtuple as _namedtuple
DecimalTuple = _namedtuple('DecimalTuple', 'sign digits exponent')
except ImportError:
DecimalTuple = lambda *args: args
# Rounding
ROUND_DOWN = 'ROUND_DOWN'
ROUND_HALF_UP = 'ROUND_HALF_UP'
ROUND_HALF_EVEN = 'ROUND_HALF_EVEN'
ROUND_CEILING = 'ROUND_CEILING'
ROUND_FLOOR = 'ROUND_FLOOR'
ROUND_UP = 'ROUND_UP'
ROUND_HALF_DOWN = 'ROUND_HALF_DOWN'
ROUND_05UP = 'ROUND_05UP'
# Compatibility with the C version
HAVE_THREADS = True
if sys.maxsize == 2**63-1:
MAX_PREC = 999999999999999999
MAX_EMAX = 999999999999999999
MIN_EMIN = -999999999999999999
else:
MAX_PREC = 425000000
MAX_EMAX = 425000000
MIN_EMIN = -425000000
MIN_ETINY = MIN_EMIN - (MAX_PREC-1)
# Errors
class DecimalException(ArithmeticError):
"""Base exception class.
Used exceptions derive from this.
If an exception derives from another exception besides this (such as
Underflow (Inexact, Rounded, Subnormal) that indicates that it is only
called if the others are present. This isn't actually used for
anything, though.
handle -- Called when context._raise_error is called and the
trap_enabler is not set. First argument is self, second is the
context. More arguments can be given, those being after
the explanation in _raise_error (For example,
context._raise_error(NewError, '(-x)!', self._sign) would
call NewError().handle(context, self._sign).)
To define a new exception, it should be sufficient to have it derive
from DecimalException.
"""
def handle(self, context, *args):
pass
class Clamped(DecimalException):
"""Exponent of a 0 changed to fit bounds.
This occurs and signals clamped if the exponent of a result has been
altered in order to fit the constraints of a specific concrete
representation. This may occur when the exponent of a zero result would
be outside the bounds of a representation, or when a large normal
number would have an encoded exponent that cannot be represented. In
this latter case, the exponent is reduced to fit and the corresponding
number of zero digits are appended to the coefficient ("fold-down").
"""
class InvalidOperation(DecimalException):
"""An invalid operation was performed.
Various bad things cause this:
Something creates a signaling NaN
-INF + INF
0 * (+-)INF
(+-)INF / (+-)INF
x % 0
(+-)INF % x
x._rescale( non-integer )
sqrt(-x) , x > 0
0 ** 0
x ** (non-integer)
x ** (+-)INF
An operand is invalid
The result of the operation after these is a quiet positive NaN,
except when the cause is a signaling NaN, in which case the result is
also a quiet NaN, but with the original sign, and an optional
diagnostic information.
"""
def handle(self, context, *args):
if args:
ans = _dec_from_triple(args[0]._sign, args[0]._int, 'n', True)
return ans._fix_nan(context)
return _NaN
class ConversionSyntax(InvalidOperation):
"""Trying to convert badly formed string.
This occurs and signals invalid-operation if a string is being
converted to a number and it does not conform to the numeric string
syntax. The result is [0,qNaN].
"""
def handle(self, context, *args):
return _NaN
class DivisionByZero(DecimalException, ZeroDivisionError):
"""Division by 0.
This occurs and signals division-by-zero if division of a finite number
by zero was attempted (during a divide-integer or divide operation, or a
power operation with negative right-hand operand), and the dividend was
not zero.
The result of the operation is [sign,inf], where sign is the exclusive
or of the signs of the operands for divide, or is 1 for an odd power of
-0, for power.
"""
def handle(self, context, sign, *args):
return _SignedInfinity[sign]
class DivisionImpossible(InvalidOperation):
"""Cannot perform the division adequately.
This occurs and signals invalid-operation if the integer result of a
divide-integer or remainder operation had too many digits (would be
longer than precision). The result is [0,qNaN].
"""
def handle(self, context, *args):
return _NaN
class DivisionUndefined(InvalidOperation, ZeroDivisionError):
"""Undefined result of division.
This occurs and signals invalid-operation if division by zero was
attempted (during a divide-integer, divide, or remainder operation), and
the dividend is also zero. The result is [0,qNaN].
"""
def handle(self, context, *args):
return _NaN
class Inexact(DecimalException):
"""Had to round, losing information.
This occurs and signals inexact whenever the result of an operation is
not exact (that is, it needed to be rounded and any discarded digits
were non-zero), or if an overflow or underflow condition occurs. The
result in all cases is unchanged.
The inexact signal may be tested (or trapped) to determine if a given
operation (or sequence of operations) was inexact.
"""
class InvalidContext(InvalidOperation):
"""Invalid context. Unknown rounding, for example.
This occurs and signals invalid-operation if an invalid context was
detected during an operation. This can occur if contexts are not checked
on creation and either the precision exceeds the capability of the
underlying concrete representation or an unknown or unsupported rounding
was specified. These aspects of the context need only be checked when
the values are required to be used. The result is [0,qNaN].
"""
def handle(self, context, *args):
return _NaN
class Rounded(DecimalException):
"""Number got rounded (not necessarily changed during rounding).
This occurs and signals rounded whenever the result of an operation is
rounded (that is, some zero or non-zero digits were discarded from the
coefficient), or if an overflow or underflow condition occurs. The
result in all cases is unchanged.
The rounded signal may be tested (or trapped) to determine if a given
operation (or sequence of operations) caused a loss of precision.
"""
class Subnormal(DecimalException):
"""Exponent < Emin before rounding.
This occurs and signals subnormal whenever the result of a conversion or
operation is subnormal (that is, its adjusted exponent is less than
Emin, before any rounding). The result in all cases is unchanged.
The subnormal signal may be tested (or trapped) to determine if a given
or operation (or sequence of operations) yielded a subnormal result.
"""
class Overflow(Inexact, Rounded):
"""Numerical overflow.
This occurs and signals overflow if the adjusted exponent of a result
(from a conversion or from an operation that is not an attempt to divide
by zero), after rounding, would be greater than the largest value that
can be handled by the implementation (the value Emax).
The result depends on the rounding mode:
For round-half-up and round-half-even (and for round-half-down and
round-up, if implemented), the result of the operation is [sign,inf],
where sign is the sign of the intermediate result. For round-down, the
result is the largest finite number that can be represented in the
current precision, with the sign of the intermediate result. For
round-ceiling, the result is the same as for round-down if the sign of
the intermediate result is 1, or is [0,inf] otherwise. For round-floor,
the result is the same as for round-down if the sign of the intermediate
result is 0, or is [1,inf] otherwise. In all cases, Inexact and Rounded
will also be raised.
"""
def handle(self, context, sign, *args):
if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN,
ROUND_HALF_DOWN, ROUND_UP):
return _SignedInfinity[sign]
if sign == 0:
if context.rounding == ROUND_CEILING:
return _SignedInfinity[sign]
return _dec_from_triple(sign, '9'*context.prec,
context.Emax-context.prec+1)
if sign == 1:
if context.rounding == ROUND_FLOOR:
return _SignedInfinity[sign]
return _dec_from_triple(sign, '9'*context.prec,
context.Emax-context.prec+1)
class Underflow(Inexact, Rounded, Subnormal):
"""Numerical underflow with result rounded to 0.
This occurs and signals underflow if a result is inexact and the
adjusted exponent of the result would be smaller (more negative) than
the smallest value that can be handled by the implementation (the value
Emin). That is, the result is both inexact and subnormal.
The result after an underflow will be a subnormal number rounded, if
necessary, so that its exponent is not less than Etiny. This may result
in 0 with the sign of the intermediate result and an exponent of Etiny.
In all cases, Inexact, Rounded, and Subnormal will also be raised.
"""
class FloatOperation(DecimalException, TypeError):
"""Enable stricter semantics for mixing floats and Decimals.
If the signal is not trapped (default), mixing floats and Decimals is
permitted in the Decimal() constructor, context.create_decimal() and
all comparison operators. Both conversion and comparisons are exact.
Any occurrence of a mixed operation is silently recorded by setting
FloatOperation in the context flags. Explicit conversions with
Decimal.from_float() or context.create_decimal_from_float() do not
set the flag.
Otherwise (the signal is trapped), only equality comparisons and explicit
conversions are silent. All other mixed operations raise FloatOperation.
"""
# List of public traps and flags
_signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded,
Underflow, InvalidOperation, Subnormal, FloatOperation]
# Map conditions (per the spec) to signals
_condition_map = {ConversionSyntax:InvalidOperation,
DivisionImpossible:InvalidOperation,
DivisionUndefined:InvalidOperation,
InvalidContext:InvalidOperation}
# Valid rounding modes
_rounding_modes = (ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_EVEN, ROUND_CEILING,
ROUND_FLOOR, ROUND_UP, ROUND_HALF_DOWN, ROUND_05UP)
##### Context Functions ##################################################
# The getcontext() and setcontext() function manage access to a thread-local
# current context.
import contextvars
_current_context_var = contextvars.ContextVar('decimal_context')
def getcontext():
"""Returns this thread's context.
If this thread does not yet have a context, returns
a new context and sets this thread's context.
New contexts are copies of DefaultContext.
"""
try:
return _current_context_var.get()
except LookupError:
context = Context()
_current_context_var.set(context)
return context
def setcontext(context):
"""Set this thread's context to context."""
if context in (DefaultContext, BasicContext, ExtendedContext):
context = context.copy()
context.clear_flags()
_current_context_var.set(context)
del contextvars # Don't contaminate the namespace
def localcontext(ctx=None):
"""Return a context manager for a copy of the supplied context
Uses a copy of the current context if no context is specified
The returned context manager creates a local decimal context
in a with statement:
def sin(x):
with localcontext() as ctx:
ctx.prec += 2
# Rest of sin calculation algorithm
# uses a precision 2 greater than normal
return +s # Convert result to normal precision
def sin(x):
with localcontext(ExtendedContext):
# Rest of sin calculation algorithm
# uses the Extended Context from the
# General Decimal Arithmetic Specification
return +s # Convert result to normal context
>>> setcontext(DefaultContext)
>>> print(getcontext().prec)
28
>>> with localcontext():
... ctx = getcontext()
... ctx.prec += 2
... print(ctx.prec)
...
30
>>> with localcontext(ExtendedContext):
... print(getcontext().prec)
...
9
>>> print(getcontext().prec)
28
"""
if ctx is None: ctx = getcontext()
return _ContextManager(ctx)
##### Decimal class #######################################################
# Do not subclass Decimal from numbers.Real and do not register it as such
# (because Decimals are not interoperable with floats). See the notes in
# numbers.py for more detail.
class Decimal(object):
"""Floating point class for decimal arithmetic."""
__slots__ = ('_exp','_int','_sign', '_is_special')
# Generally, the value of the Decimal instance is given by
# (-1)**_sign * _int * 10**_exp
# Special values are signified by _is_special == True
# We're immutable, so use __new__ not __init__
def __new__(cls, value="0", context=None):
"""Create a decimal point instance.
>>> Decimal('3.14') # string input
Decimal('3.14')
>>> Decimal((0, (3, 1, 4), -2)) # tuple (sign, digit_tuple, exponent)
Decimal('3.14')
>>> Decimal(314) # int
Decimal('314')
>>> Decimal(Decimal(314)) # another decimal instance
Decimal('314')
>>> Decimal(' 3.14 \\n') # leading and trailing whitespace okay
Decimal('3.14')
"""
# Note that the coefficient, self._int, is actually stored as
# a string rather than as a tuple of digits. This speeds up
# the "digits to integer" and "integer to digits" conversions
# that are used in almost every arithmetic operation on
# Decimals. This is an internal detail: the as_tuple function
# and the Decimal constructor still deal with tuples of
# digits.
self = object.__new__(cls)
# From a string
# REs insist on real strings, so we can too.
if isinstance(value, str):
m = _parser(value.strip().replace("_", ""))
if m is None:
if context is None:
context = getcontext()
return context._raise_error(ConversionSyntax,
"Invalid literal for Decimal: %r" % value)
if m.group('sign') == "-":
self._sign = 1
else:
self._sign = 0
intpart = m.group('int')
if intpart is not None:
# finite number
fracpart = m.group('frac') or ''
exp = int(m.group('exp') or '0')
self._int = str(int(intpart+fracpart))
self._exp = exp - len(fracpart)
self._is_special = False
else:
diag = m.group('diag')
if diag is not None:
# NaN
self._int = str(int(diag or '0')).lstrip('0')
if m.group('signal'):
self._exp = 'N'
else:
self._exp = 'n'
else:
# infinity
self._int = '0'
self._exp = 'F'
self._is_special = True
return self
# From an integer
if isinstance(value, int):
if value >= 0:
self._sign = 0
else:
self._sign = 1
self._exp = 0
self._int = str(abs(value))
self._is_special = False
return self
# From another decimal
if isinstance(value, Decimal):
self._exp = value._exp
self._sign = value._sign
self._int = value._int
self._is_special = value._is_special
return self
# From an internal working value
if isinstance(value, _WorkRep):
self._sign = value.sign
self._int = str(value.int)
self._exp = int(value.exp)
self._is_special = False
return self
# tuple/list conversion (possibly from as_tuple())
if isinstance(value, (list,tuple)):
if len(value) != 3:
raise ValueError('Invalid tuple size in creation of Decimal '
'from list or tuple. The list or tuple '
'should have exactly three elements.')
# process sign. The isinstance test rejects floats
if not (isinstance(value[0], int) and value[0] in (0,1)):
raise ValueError("Invalid sign. The first value in the tuple "
"should be an integer; either 0 for a "
"positive number or 1 for a negative number.")
self._sign = value[0]
if value[2] == 'F':
# infinity: value[1] is ignored
self._int = '0'
self._exp = value[2]
self._is_special = True
else:
# process and validate the digits in value[1]
digits = []
for digit in value[1]:
if isinstance(digit, int) and 0 <= digit <= 9:
# skip leading zeros
if digits or digit != 0:
digits.append(digit)
else:
raise ValueError("The second value in the tuple must "
"be composed of integers in the range "
"0 through 9.")
if value[2] in ('n', 'N'):
# NaN: digits form the diagnostic
self._int = ''.join(map(str, digits))
self._exp = value[2]
self._is_special = True
elif isinstance(value[2], int):
# finite number: digits give the coefficient
self._int = ''.join(map(str, digits or [0]))
self._exp = value[2]
self._is_special = False
else:
raise ValueError("The third value in the tuple must "
"be an integer, or one of the "
"strings 'F', 'n', 'N'.")
return self
if isinstance(value, float):
if context is None:
context = getcontext()
context._raise_error(FloatOperation,
"strict semantics for mixing floats and Decimals are "
"enabled")
value = Decimal.from_float(value)
self._exp = value._exp
self._sign = value._sign
self._int = value._int
self._is_special = value._is_special
return self
raise TypeError("Cannot convert %r to Decimal" % value)
@classmethod
def from_float(cls, f):
"""Converts a float to a decimal number, exactly.
Note that Decimal.from_float(0.1) is not the same as Decimal('0.1').
Since 0.1 is not exactly representable in binary floating point, the
value is stored as the nearest representable value which is
0x1.999999999999ap-4. The exact equivalent of the value in decimal
is 0.1000000000000000055511151231257827021181583404541015625.
>>> Decimal.from_float(0.1)
Decimal('0.1000000000000000055511151231257827021181583404541015625')
>>> Decimal.from_float(float('nan'))
Decimal('NaN')
>>> Decimal.from_float(float('inf'))
Decimal('Infinity')
>>> Decimal.from_float(-float('inf'))
Decimal('-Infinity')
>>> Decimal.from_float(-0.0)
Decimal('-0')
"""
if isinstance(f, int): # handle integer inputs
sign = 0 if f >= 0 else 1
k = 0
coeff = str(abs(f))
elif isinstance(f, float):
if _math.isinf(f) or _math.isnan(f):
return cls(repr(f))
if _math.copysign(1.0, f) == 1.0:
sign = 0
else:
sign = 1
n, d = abs(f).as_integer_ratio()
k = d.bit_length() - 1
coeff = str(n*5**k)
else:
raise TypeError("argument must be int or float.")
result = _dec_from_triple(sign, coeff, -k)
if cls is Decimal:
return result
else:
return cls(result)
def _isnan(self):
"""Returns whether the number is not actually one.
0 if a number
1 if NaN
2 if sNaN
"""
if self._is_special:
exp = self._exp
if exp == 'n':
return 1
elif exp == 'N':
return 2
return 0
def _isinfinity(self):
"""Returns whether the number is infinite
0 if finite or not a number
1 if +INF
-1 if -INF
"""
if self._exp == 'F':
if self._sign:
return -1
return 1
return 0
def _check_nans(self, other=None, context=None):
"""Returns whether the number is not actually one.
if self, other are sNaN, signal
if self, other are NaN return nan
return 0
Done before operations.
"""
self_is_nan = self._isnan()
if other is None:
other_is_nan = False
else:
other_is_nan = other._isnan()
if self_is_nan or other_is_nan:
if context is None:
context = getcontext()
if self_is_nan == 2:
return context._raise_error(InvalidOperation, 'sNaN',
self)
if other_is_nan == 2:
return context._raise_error(InvalidOperation, 'sNaN',
other)
if self_is_nan:
return self._fix_nan(context)
return other._fix_nan(context)
return 0
def _compare_check_nans(self, other, context):
"""Version of _check_nans used for the signaling comparisons
compare_signal, __le__, __lt__, __ge__, __gt__.
Signal InvalidOperation if either self or other is a (quiet
or signaling) NaN. Signaling NaNs take precedence over quiet
NaNs.
Return 0 if neither operand is a NaN.
"""
if context is None:
context = getcontext()
if self._is_special or other._is_special:
if self.is_snan():
return context._raise_error(InvalidOperation,
'comparison involving sNaN',
self)
elif other.is_snan():
return context._raise_error(InvalidOperation,
'comparison involving sNaN',
other)
elif self.is_qnan():
return context._raise_error(InvalidOperation,
'comparison involving NaN',
self)
elif other.is_qnan():
return context._raise_error(InvalidOperation,
'comparison involving NaN',
other)
return 0
def __bool__(self):
"""Return True if self is nonzero; otherwise return False.
NaNs and infinities are considered nonzero.
"""
return self._is_special or self._int != '0'
def _cmp(self, other):
"""Compare the two non-NaN decimal instances self and other.
Returns -1 if self < other, 0 if self == other and 1
if self > other. This routine is for internal use only."""
if self._is_special or other._is_special:
self_inf = self._isinfinity()
other_inf = other._isinfinity()
if self_inf == other_inf:
return 0
elif self_inf < other_inf:
return -1
else:
return 1
# check for zeros; Decimal('0') == Decimal('-0')
if not self:
if not other:
return 0
else:
return -((-1)**other._sign)
if not other:
return (-1)**self._sign
# If different signs, neg one is less
if other._sign < self._sign:
return -1
if self._sign < other._sign:
return 1
self_adjusted = self.adjusted()
other_adjusted = other.adjusted()
if self_adjusted == other_adjusted:
self_padded = self._int + '0'*(self._exp - other._exp)
other_padded = other._int + '0'*(other._exp - self._exp)
if self_padded == other_padded:
return 0
elif self_padded < other_padded:
return -(-1)**self._sign
else:
return (-1)**self._sign
elif self_adjusted > other_adjusted:
return (-1)**self._sign
else: # self_adjusted < other_adjusted
return -((-1)**self._sign)
# Note: The Decimal standard doesn't cover rich comparisons for
# Decimals. In particular, the specification is silent on the
# subject of what should happen for a comparison involving a NaN.
# We take the following approach:
#
# == comparisons involving a quiet NaN always return False
# != comparisons involving a quiet NaN always return True
# == or != comparisons involving a signaling NaN signal
# InvalidOperation, and return False or True as above if the
# InvalidOperation is not trapped.
# <, >, <= and >= comparisons involving a (quiet or signaling)
# NaN signal InvalidOperation, and return False if the
# InvalidOperation is not trapped.
#
# This behavior is designed to conform as closely as possible to
# that specified by IEEE 754.
def __eq__(self, other, context=None):
self, other = _convert_for_comparison(self, other, equality_op=True)
if other is NotImplemented:
return other
if self._check_nans(other, context):
return False
return self._cmp(other) == 0
def __lt__(self, other, context=None):
self, other = _convert_for_comparison(self, other)
if other is NotImplemented:
return other
ans = self._compare_check_nans(other, context)
if ans:
return False
return self._cmp(other) < 0
def __le__(self, other, context=None):
self, other = _convert_for_comparison(self, other)
if other is NotImplemented:
return other
ans = self._compare_check_nans(other, context)
if ans:
return False
return self._cmp(other) <= 0
def __gt__(self, other, context=None):
self, other = _convert_for_comparison(self, other)
if other is NotImplemented:
return other
ans = self._compare_check_nans(other, context)
if ans:
return False
return self._cmp(other) > 0
def __ge__(self, other, context=None):
self, other = _convert_for_comparison(self, other)
if other is NotImplemented:
return other
ans = self._compare_check_nans(other, context)
if ans:
return False
return self._cmp(other) >= 0
def compare(self, other, context=None):
"""Compare self to other. Return a decimal value:
a or b is a NaN ==> Decimal('NaN')
a < b ==> Decimal('-1')
a == b ==> Decimal('0')
a > b ==> Decimal('1')
"""
other = _convert_other(other, raiseit=True)
# Compare(NaN, NaN) = NaN
if (self._is_special or other and other._is_special):
ans = self._check_nans(other, context)
if ans:
return ans
return Decimal(self._cmp(other))
def __hash__(self):
"""x.__hash__() <==> hash(x)"""
# In order to make sure that the hash of a Decimal instance
# agrees with the hash of a numerically equal integer, float
# or Fraction, we follow the rules for numeric hashes outlined
# in the documentation. (See library docs, 'Built-in Types').
if self._is_special:
if self.is_snan():
raise TypeError('Cannot hash a signaling NaN value.')
elif self.is_nan():
return _PyHASH_NAN
else:
if self._sign:
return -_PyHASH_INF
else:
return _PyHASH_INF
if self._exp >= 0:
exp_hash = pow(10, self._exp, _PyHASH_MODULUS)
else:
exp_hash = pow(_PyHASH_10INV, -self._exp, _PyHASH_MODULUS)
hash_ = int(self._int) * exp_hash % _PyHASH_MODULUS
ans = hash_ if self >= 0 else -hash_
return -2 if ans == -1 else ans
def as_tuple(self):
"""Represents the number as a triple tuple.
To show the internals exactly as they are.
"""
return DecimalTuple(self._sign, tuple(map(int, self._int)), self._exp)
def as_integer_ratio(self):
"""Express a finite Decimal instance in the form n / d.
Returns a pair (n, d) of integers. When called on an infinity
or NaN, raises OverflowError or ValueError respectively.
>>> Decimal('3.14').as_integer_ratio()
(157, 50)
>>> Decimal('-123e5').as_integer_ratio()
(-12300000, 1)
>>> Decimal('0.00').as_integer_ratio()
(0, 1)
"""
if self._is_special:
if self.is_nan():
raise ValueError("cannot convert NaN to integer ratio")
else:
raise OverflowError("cannot convert Infinity to integer ratio")
if not self:
return 0, 1
# Find n, d in lowest terms such that abs(self) == n / d;
# we'll deal with the sign later.
n = int(self._int)
if self._exp >= 0:
# self is an integer.
n, d = n * 10**self._exp, 1