Skip to content
forked from PoseLib/PoseLib

Minimal solvers for calibrated camera pose estimation

License

Notifications You must be signed in to change notification settings

aipiano/PoseLib

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PoseLib

This library provides a collection of minimal solvers for camera pose estimation. The focus is on calibrated absolute pose estimation problems from different types of correspondences (e.g. point-point, point-line, line-point, line-line).

The goals of this project are

  • Fast and robust implementation of the current state-of-the-art solvers.
  • Consistent calling interface between different solvers.
  • Minimize dependencies, both external (currently only Eigen) and internal. Each solver is (mostly) stand-alone, making it easy to extract only a specific solver to integrate into other frameworks.

Naming convention

For the solver names we use a slightly non-standard notation where we denote the solver as

pXpYplZlpWll

where the number of correspondences required is given by

  • Xp - 2D point to 3D point,
  • Ypl - 2D point to 3D line,
  • Zlp - 2D line to 3D point,
  • Wll - 2D line to 2D line.

The prefix with u is for upright solvers and g for generalized camera solvers. Solvers that estimate focal length have the postfix with f and similarly s for solvers that estimate scale.

Calling conventions

All solvers return their solutions as a vector of CameraPose structs, which defined as

struct CameraPose {
   Eigen::Matrix3d R;
   Eigen::Vector3d t;
   double alpha = 1.0; // either focal length or scale
};

where [R t] maps from the world coordinate system into the camera coordinate system.

For 2D point to 3D point correspondences, the image points are represented as unit-length bearings vectors. The returned camera poses (R,t) then satisfies (for some lambda)

  lambda * x[i] = R * X[i] + t

where x[i] is the 2D point and X[i] is the 3D point. Note that only the P3P solver filters solutions with negative lambda.

Solvers that use point-to-point constraints take one vector with bearing vectors x and one vector with the corresponding 3D points X, e.g. for the P3P solver the function declaration is

int p3p(const std::vector<Eigen::Vector3d> &x,
        const std::vector<Eigen::Vector3d> &X,
        std::vector<CameraPose> *output);

Each solver returns the number of real solutions found.

For constraints with 2D lines, the lines are represented in homogeneous coordinates. In the case of 2D line to 3D point constraints, the returned camera poses then satisfies

  l[i].transpose() * (R * X[i] + t) = 0

where l[i] is the line and X[i] is the 3D point.

For constraints with 3D lines, the lines are represented by a 3D point X and a bearing vector V. In the case of 2D point to 3D point constraints

  lambda * x[i] = R * (X[i] + mu * V[i]) + t

for some values of lambda and mu. Similarly, for line to line constraints we have

  l[i].transpose() * (R * (X[i] + mu * V[i]) + t) = 0

Generalized Cameras

For generalized cameras we represent the image rays similarly to the 3D lines above, with an offset p and a bearing vector x. For example, in the case of point-to-point correspondences we have

p[i] + lambda * x[i] = R * X[i] + t

In the case of unknown scale we also estimate alpha such that

alpha * p[i] + lambda * x[i] = R * X[i] + t

For example, the generalized pose and scale solver (from four points) has the following signature

 int gp4ps(const std::vector<Eigen::Vector3d> &p, const std::vector<Eigen::Vector3d> &x,
              const std::vector<Eigen::Vector3d> &X, std::vector<CameraPose> *output);

Upright Solvers

For the upright solvers it assumed that the rotation is around the y-axis, i.e.

R = [a 0 -b; 0 1 0; b 0 a] 

To use these solvers it necessary to pre-rotate the input such that this is satisfied.

Implemented solvers

The following solvers are currently implemented.

Absolute Pose

Solver Point-Point Point-Line Line-Point Line-Line Upright Generalized Approx. runtime Max. solutions Comment
p3p 3 0 0 0 250 ns 4 Persson and Nordberg, LambdaTwist (ECCV18)
gp3p 3 0 0 0 ✔️ 1.6 us 8 Kukelova et al., E3Q3 (CVPR16)
gp4ps 4 0 0 0 ✔️ 1.8 us 8 Unknown scale.
Kukelova et al., E3Q3 (CVPR16)
Camposeco et al.(ECCV16)
p4pf 4 0 0 0 2.3 us 8 Unknown focal length.
Kukelova et al., E3Q3 (CVPR16)
p2p2pl 2 2 0 0 30 us 16 Josephson et al. (CVPR07)
p6lp 0 0 6 0 1.8 us 8 Kukelova et al., E3Q3 (CVPR16)
p5lp_radial 0 0 5 0 1 us 4 Kukelova et al., (ICCV13)
p2p1ll 2 0 0 1 1.6 us 8 Kukelova et al., E3Q3 (CVPR16), Zhou et al. (ACCV18)
p1p2ll 1 0 0 2 1.7 us 8 Kukelova et al., E3Q3 (CVPR16), Zhou et al. (ACCV18)
p3ll 0 0 0 3 1.8 us 8 Kukelova et al., E3Q3 (CVPR16), Zhou et al. (ACCV18)
up2p 2 0 0 0 ✔️ 65 ns 2 Kukelova et al. (ACCV10)
ugp2p 2 0 0 0 ✔️ ✔️ 65 ns 2 Adapted from Kukelova et al. (ACCV10)
ugp3ps 3 0 0 0 ✔️ ✔️ 390 ns 2 Unknown scale. Adapted from Kukelova et al. (ACCV10)
up1p2pl 1 2 0 0 ✔️ 370 ns 4
up4pl 0 4 0 0 ✔️ 1.4 us 8 Sweeney et al. (3DV14)
ugp4pl 0 4 0 0 ✔️ ✔️ 1.4 us 8 Sweeney et al. (3DV14)

Relative Pose

Solver Point-Point Upright Planar Generalized Approx. runtime Max. solutions Comment
relpose_5pt 5 5.5 us 10 Nister (PAMI 2004)
relpose_8pt 8+ 2.2+ us 1
relpose_upright_3pt 3 ✔️ 210 ns 4 Sweeney et al. (3DV14)
gen_relpose_upright_4pt 4 ✔️ ✔️ 1.2 us 6 Sweeney et al. (3DV14)
relpose_upright_planar_2pt 2 ✔️ ✔️ 120 ns 2 Choi and Kim (IVC 2018)
relpose_upright_planar_3pt 3 ✔️ ✔️ 300 ns 1 Choi and Kim (IVC 2018)

How to compile?

Getting the code:

> git clone --recursive https://github.com/vlarsson/PoseLib.git
> cd PoseLib

Example of a local installation:

> mkdir _build && cd _build
> cmake -DCMAKE_INSTALL_PREFIX=../_install ..
> cmake --build . --target install -j 8
  (equivalent to  'make install -j8' in linux)

Installed files:

> tree ../installed
  .
  ├── bin
  │   └── benchmark
  ├── include
  │   └── PoseLib
  │       ├── gp3p.h
  │       ├──  ...
  │       ├── poselib.h          <==  Library header (includes all the rest)
  │       ├──  ...
  │       └── version.h
  └── lib
      ├── cmake
      │   └── PoseLib
      │       ├── PoseLibConfig.cmake
      │       ├── PoseLibConfigVersion.cmake
      │       ├── PoseLibTargets.cmake
      │       └── PoseLibTargets-release.cmake
      └── libPoseLib.a

Uninstall library:

> make uninstall

Benchmark

Conditional compilation of benchmark binary is controlled by WITH_BENCHMARK option. Default if OFF (without benchmark).

Add -DWITH_BENCHMARK=ON to cmake to activate.

> cmake -DWITH_BENCHMARK=ON ..

Use library (as dependency) in an external project.

cmake_minimum_required(VERSION 3.13)
project(Foo)

find_package(PoseLib REQUIRED)

add_executable(foo foo.cpp)
target_link_libraries(foo PRIVATE PoseLib::PoseLib)

Citing

If you are using the library for (scientific) publications, please cite the following source:

@misc{PoseLib,
  title = {{PoseLib - Minimal Solvers for Camera Pose Estimation}},
  author = {Viktor Larsson},
  URL = {https://github.com/vlarsson/PoseLib},
  year = {2020}
}

Please cite also the original publications of the different methods (see table above).

License

PoseLib is licensed under the BSD 3-Clause license. Please see License for details.

About

Minimal solvers for calibrated camera pose estimation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 95.9%
  • CMake 4.1%