Representing 3D sparse map points and lines for camera relocalization
Bach-Thuan Bui, Huy-Hoang Bui, Dinh-Tuan Tran, Joo-Ho Lee
2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
git submodule update --init --recursive
# Refer to https://pytorch.org/get-started/previous-versions/ to install pytorch compatible with your CUDA
python -m pip install torch==1.12.0 torchvision==0.13.0
python -m pip install -r requirements.txt
Please run the provided scripts to prepare and download the data which has been undistorted by running:
- 7scenes:
./prepare_scripts/seven_scenes.sh
- Cambridge Landmarks
./prepare_scripts/cambridge.sh
- Indoor-6
./prepare_scripts/indoor6.sh
Please download the pre-trained models by running:
./prepare_scripts/download_pre_trained_models.sh
For example, evaluate KingsCollege scene:
python runners/eval.py --dataset Cambridge --scene KingsCollege -expv pl2map
python runners/train.py --dataset Cambridge --scene KingsCollege -expv pl2map_test
If you use this code in your project, please consider citing the following paper:
@article{bui2024representing,
title={Representing 3D sparse map points and lines for camera relocalization},
author={Bui, Bach-Thuan and Bui, Huy-Hoang and Tran, Dinh-Tuan and Lee, Joo-Ho},
journal={arXiv preprint arXiv:2402.18011},
year={2024}
}
This code is built based on Limap. We thank the authors for their useful source code.