Skip to content

Latest commit

 

History

History
82 lines (81 loc) · 34.1 KB

INDEX.md

File metadata and controls

82 lines (81 loc) · 34.1 KB

Index

Name C CoffeeScript Cplusplus CSharp Java JavaScript PHP Python Ruby GO
AKS Primarility Test ✔️ ✖️ ✔️ ✖️ ✔️ ✖️ ✖️ ✖️ ✖️ ✖️
Activity Selection ✔️ ✖️ ✔️ ✖️ ✔️ ✖️ ✖️ ✖️ ✖️ ✔️
Bellman Ford ✖️ ✖️ ✔️ ✖️ ✖️ ✖️ ✖️ ✔️ ✖️ ✖️
Big Integer ✖️ ✖️ ✔️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️
Binary Search ✔️ ✔️ ✔️ ✔️ ✔️ ✔️ ✔️ ✔️ ✔️ ✔️
Binary Search Tree ✔️ ✖️ ✔️ ✔️ ✔️ ✖️ ✖️ ✔️ ✔️ ✖️
Binary Tree ✔️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️
Boyer Moore Algorithm ✖️ ✖️ ✔️ ✖️ ✖️ ✖️ ✖️ ✔️ ✖️ ✖️
Breadth First Search ✖️ ✖️ ✔️ ✖️ ✔️ ✖️ ✖️ ✔️ ✖️ ✖️
Bubble Sort ✖️ ✔️ ✔️ ✔️ ✔️ ✔️ ✔️ ✔️ ✔️ ✖️
Chinese Remainder Theorem ✖️ ✔️ ✔️ ✔️ ✔️ ✖️ ✖️ ✔️ ✖️ ✖️
Circular Linked List ✔️ ✖️ ✔️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️
Counting Sort ✔️ ✔️ ✔️ ✔️ ✔️ ✔️ ✔️ ✔️ ✖️ ✖️
Depth First Search ✔️ ✖️ ✔️ ✖️ ✖️ ✖️ ✖️ ✔️ ✖️ ✖️
Djikstra Algorithm ✔️ ✖️ ✔️ ✖️ ✔️ ✖️ ✖️ ✔️ ✖️ ✖️
Dynamic Programming Rod Cutting ✖️ ✖️ ✔️ ✔️ ✔️ ✔️ ✔️ ✔️ ✖️ ✖️
Dynamic Stack Arrays ✔️ ✖️ ✖️ ✖️ ✔️ ✖️ ✖️ ✔️ ✖️ ✖️
Euclidean Algorithm ✖️ ✔️ ✔️ ✔️ ✔️ ✖️ ✔️ ✔️ ✖️ ✖️
Extended Euclidean Algorithm ✖️ ✔️ ✖️ ✔️ ✖️ ✖️ ✖️ ✔️ ✖️ ✖️
Fenwick Tree ✖️ ✖️ ✔️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️
Fermat Little Theorem ✔️ ✔️ ✔️ ✖️ ✖️ ✖️ ✖️ ✔️ ✔️ ✖️
Find Max Subarray ✖️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️ ✔️ ✖️
Floyd Warshall Algorithm ✖️ ✖️ ✔️ ✖️ ✔️ ✖️ ✖️ ✔️ ✖️ ✔️
Ford Fulkerson Method ✖️ ✖️ ✔️ ✖️ ✔️ ✖️ ✖️ ✔️ ✖️ ✖️
Heap Sort ✖️ ✖️ ✔️ ✔️ ✔️ ✔️ ✖️ ✔️ ✔️ ✖️
Inheritance ✖️ ✖️ ✔️ ✖️ ✔️ ✖️ ✖️ ✖️ ✖️ ✖️
Inorder Traversal ✔️ ✖️ ✔️ ✖️ ✔️ ✖️ ✖️ ✔️ ✖️ ✔️
Insertion Sort ✔️ ✔️ ✔️ ✔️ ✔️ ✖️ ✖️ ✔️ ✔️ ✖️
Interpolation Search ✖️ ✔️ ✔️ ✔️ ✔️ ✔️ ✔️ ✔️ ✖️ ✔️
Kadane Algorithm ✖️ ✔️ ✔️ ✔️ ✔️ ✖️ ✖️ ✔️ ✖️ ✖️
Knapsack Problem ✖️ ✖️ ✔️ ✖️ ✔️ ✖️ ✖️ ✖️ ✖️ ✖️
Knuth Morris Pratt (KMP) Algorithm ✖️ ✖️ ✔️ ✔️ ✖️ ✖️ ✖️ ✔️ ✖️ ✖️
Kruskal Algorithm ✖️ ✖️ ✔️ ✖️ ✔️ ✖️ ✖️ ✖️ ✖️ ✖️
Levelorder Traversal ✔️ ✖️ ✔️ ✖️ ✔️ ✖️ ✖️ ✔️ ✖️ :✔️
Linear Search ✔️ ✔️ ✔️ ✔️ ✔️ ✔️ ✔️ ✔️ ✔️ ✔️
Linked List ✔️ ✖️ ✔️ ✖️ ✔️ ✖️ ✖️ ✔️ ✖️ ✖️
Linked List Bubble Sort ✔️ ✖️ ✔️ ✖️ ✔️ ✖️ ✖️ ✖️ ✖️ ✖️
Linked List Insertion Sort ✔️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️
Linked List Selection Sort ✖️ ✖️ ✔️ ✖️ ✔️ ✖️ ✖️ ✖️ ✔️ ✖️
Logarithmic Exponent ✔️ ✔️ ✔️ ✖️ ✖️ ✖️ ✖️ ✔️ ✖️ ✖️
Longest Increasing Subsequence ✖️ ✖️ ✔️ ✖️ ✖️ ✖️ ✖️ ✖️ ✔️
Matrix Chain Multiplication ✖️ ✖️ ✔️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️
Merge Sort ✔️ ✔️ ✔️ ✖️ ✔️ ✖️ ✖️ ✔️ ✔️ ✔️
Merge Sort with Inertion Sort ✖️ ✔️ ✔️ ✖️ ✖️ ✖️ ✖️ ✔️ ✖️ ✖️
Naive String Matching ✖️ ✔️ ✔️ ✖️ ✔️ ✖️ ✔️ ✔️ ✔️ ✖️
Ordered doubly linked list ✖️ ✖️ ✔️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️
Postorder Traversal ✔️ ✖️ ✔️ ✖️ ✔️ ✖️ ✖️ ✔️ ✖️ ✔️
Preorder Traversal ✔️ ✖️ ✔️ ✖️ ✔️ ✖️ ✖️ ✔️ ✖️ ✔️
Prefix function ✖️ ✖️ ✔️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️
Prims Algorithm ✔️ ✖️ ✔️ ✖️ ✖️ ✖️ ✖️ ✔️ ✖️ ✖️
Priority Queue ✖️ ✖️ ✔️ ✖️ ✔️ ✖️ ✖️ ✖️ ✖️ ✖️
Queue_Using_Arrays ✔️ ✖️ ✔️ ✖️ ✖️ ✖️ ✖️ ✔️ ✖️ ✖️
Queue_Using_Linked_List ✔️ ✖️ ✔️ ✖️ ✔️ ✖️ ✖️ ✔️ ✖️ ✖️
Queue_Using_Stacks(Dequeue) ✖️ ✖️ ✖️ ✖️ ✔️ ✖️ ✖️ ✖️ ✖️ ✖️
Queue_Using_Stacks(Enqueue) ✔️ ✖️ ✖️ ✖️ ✔️ ✖️ ✖️ ✖️ ✖️ ✖️
Quick Sort ✔️ ✔️ ✔️ ✖️ ✔️ ✖️ ✖️ ✔️ ✔️ ✖️
Quick Sort 3-way ✖️ ✖️ ✔️ ✖️ ✖️ ✖️ ✖️ ✔️ ✖️ ✖️
Radix Sort ✔️ ✔️ ✔️ ✖️ ✔️ ✖️ ✖️ ✔️ ✖️ ✖️
Randomized Quick Sort ✖️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️ ✔️ ✖️
Reversal Linked List ✔️ ✖️ ✔️ ✖️ ✔️ ✖️ ✖️ ✔️ ✖️ ✖️
Segment Tree(RMQ) ✖️ ✖️ ✔️ ✖️ ✔️ ✖️ ✖️ ✔️ ✖️ ✖️
Selection Sort ✔️ ✔️ ✔️ ✔️ ✔️ ✖️ ✖️ ✔️ ✔️ ✖️
Shell Sort ✖️ ✔️ ✔️ ✖️ ✔️ ✖️ ✖️ ✔️ ✖️ ✖️
Shortest Path Finder Algorithm ✖️ ✖️ ✔️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️
Sieve Of Eratosthenes ✖️ ✔️ ✔️ ✖️ ✔️ ✖️ ✖️ ✔️ ✖️ ✖️
Sleep Sort ✔️ ✔️ ✔️ ✖️ ✔️ ✖️ ✖️ ✔️ ✔️ ✖️
Stack using arrays ✖️ ✖️ ✔️ ✖️ ✔️ ✖️ ✖️ ✔️ ✖️ ✖️
Stack using Linked list ✖️ ✖️ ✔️ ✖️ ✔️ ✖️ ✖️ ✔️ ✖️ ✖️
Stack using Queues(Effecient Dequeue) ✖️ ✖️ ✔️ ✖️ ✔️ ✖️ ✖️ ✔️ ✖️ ✖️
Stack using Queues(Effecient Enqueue) ✖️ ✖️ ✔️ ✖️ ✔️ ✖️ ✖️ ✔️ ✖️ ✖️
Strassens_Algorithm ✖️ ✖️ ✔️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️
Suffix Array ✖️ ✖️ ✔️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️
Ternary Search ✖️ ✔️ ✔️ ✖️ ✔️ ✖️ ✖️ ✔️ ✖️ ✖️
Topological Sort ✖️ ✖️ ✔️ ✖️ ✖️ ✖️ ✖️ ✔️ ✖️ ✖️
Treap ✖️ ✖️ ✔️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️
Trie for natural numbers ✖️ ✖️ ✔️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️
Trie for words ✖️ ✖️ ✔️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️ ✖️
Z Algorithm ✖️ ✔️ ✔️ ✖️ ✖️ ✖️ ✖️ ✔️ ✖️ ✖️