netsim
is a crate for simulating networks for the sake of testing network-oriented Rust
software. You can use it to run Rust functions in network-isolated containers, and assemble
virtual network for these functions to communicate over.
Network namespaces are a linux feature which can provide a thread or process with its own view
of the system's network interfaces and routing table. This crate's spawn
module provides
functions for spawning threads into their own network namespaces. The most primitive of these
functions is new_namespace
, which is demonstrated below. In this example we list the visible
network interfaces using the get_if_addrs
crate.
extern crate netsim;
extern crate get_if_addrs;
use netsim::spawn;
// First, check that there is more than one network interface. This will generally be true
// since there will at least be the loopback interface.
let interfaces = get_if_addrs::get_if_addrs().unwrap();
assert!(interfaces.len() > 0);
// Now check how many network interfaces we can see inside a fresh network namespace. There
// should be zero.
let join_handle = spawn::new_namespace(|| {
get_if_addrs::get_if_addrs().unwrap()
});
let interfaces = join_handle.join().unwrap();
assert!(interfaces.is_empty());
This demonstrates how to launch a thread - perhaps running an automated test - into a clean environment. However an environment with no network interfaces is pretty useless...
We can create virtual IP and Ethernet interfaces using the type in the iface
module. For
example, Ipv4Iface
lets you create a new IP (TUN) interface and implements futures::{Stream, Sink}
so that you can read/write raw packets to it.
extern crate netsim;
extern crate tokio_core;
extern crate futures;
use std::net::Ipv4Addr;
use tokio_core::reactor::Core;
use futures::{Future, Stream};
use netsim::iface::Ipv4IfaceBuilder;
let mut core = Core::new().unwrap();
let handle = core.handle();
// Create a network interface named "netsim"
let iface = {
Ipv4IfaceBuilder::new()
.name("netsim")
.address(Ipv4Addr::new(192, 168, 0, 23))
.netmask(Ipv4Addr::new(255, 255, 255, 0))
.build(&handle)
.unwrap()
};
// Read the first `Ipv4Packet` sent from the interface.
let packet = core.run({
iface
.into_future()
.map_err(|(e, _)| e)
.map(|(packet_opt, _)| packet_opt.unwrap())
}).unwrap();
However for simply testing network code, you don't need to create interfaces manually like this.
Rather than performing the above two steps individually you can use the functions in the
spawn
module to set up various network environments for you. For example,
spawn::on_subnet_v4
will spawn a thread with a single network interface configured to use the
given subnet. It returns a JoinHandle
to join the thread with and an Ipv4Plug
to read/write
packets to the thread's network interface.
extern crate netsim;
extern crate tokio_core;
extern crate futures;
use std::net::UdpSocket;
use tokio_core::reactor::Core;
use futures::{Future, Stream};
use netsim::{spawn, SubnetV4};
use netsim::wire::Ipv4Payload;
let mut core = Core::new().unwrap();
let handle = core.handle();
let subnet = SubnetV4::local_10();
let (join_handle, plug) = spawn::on_subnet_v4(&handle, subnet, |ip_addr| {
let socket = UdpSocket::bind("0.0.0.0:0").unwrap();
socket.send_to(b"hello world", "10.1.2.3:4567").unwrap();
});
core.run({
plug.rx
.into_future()
.map(|(packet_opt, _)| {
let packet = packet_opt.unwrap();
match packet.payload() {
Ipv4Payload::Udp(udp) => {
assert_eq!(&udp.payload()[..], &b"hello world"[..]);
},
_ => panic!(),
}
})
}).unwrap()
To simulate a bunch of IPv4-connected nodes you can use the functions in the node
module
along with the spawn::network_v4
function to describe and launch a simluated network test.
extern crate tokio_core;
extern crate future_utils;
extern crate netsim;
use std::net::UdpSocket;
use tokio_core::reactor::Core;
use netsim::{spawn, node, SubnetV4};
let mut core = Core::new().unwrap();
let handle = core.handle();
let (tx, rx) = std::sync::mpsc::channel();
let node_a = node::endpoint_v4(move |ip_addr| {
let socket = UdpSocket::bind(("0.0.0.0", 1234)).unwrap();
tx.send(ip_addr).unwrap();
let mut buffer = [0; 1024];
let (n, addr) = socket.recv_from(&mut buffer).unwrap();
buffer[..n].to_owned()
});
let node_b = node::endpoint_v4(move |_ip_addr| {
let ip = rx.recv().unwrap();
let socket = UdpSocket::bind("0.0.0.0:0").unwrap();
socket.send_to(b"hello world", (ip, 1234)).unwrap();
});
let router_node = node::router_v4((node_a, node_b));
let (join_handle, _plug) = spawn::network_v4(&handle, SubnetV4::global(), router_node);
let (received, ()) = core.run(future_utils::thread_future(|| {
join_handle.join().unwrap()
})).unwrap();
assert_eq!(&received[..], b"hello world");
Note that we need to make sure to drive the Core
while blocking on the JoinHandle
in a
separate thread. A future version of this library may clean this situation up.
It's possible to set up more complicated (non-hierarchal) network topologies, ethernet networks, namespaces with multiple interfaces etc. by directly using the primitives in this library. Have an explore of the API, and if anything needs clarification or could be designed better then drop a message on the bug tracker :)