forked from gouthampradhan/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLongestLineofConsecutiveOneinMatrix.java
117 lines (110 loc) · 3.32 KB
/
LongestLineofConsecutiveOneinMatrix.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
package array;
/**
* Created by gouthamvidyapradhan on 14/08/2019 Given a 01 matrix M, find the longest line of
* consecutive one in the matrix. The line could be horizontal, vertical, diagonal or anti-diagonal.
* Example: Input: [[0,1,1,0], [0,1,1,0], [0,0,0,1]] Output: 3 Hint: The number of elements in the
* given matrix will not exceed 10,000.
*
* <p>Solution O(N x M) for each cell keep track of maximum value possible horizontally, vertically
* and diagonally. Start iterating from left-right and top-bottom and repeat the same from
* right-left and top to bottom to get max for anti-diagonal and return the max value.
*/
public class LongestLineofConsecutiveOneinMatrix {
final int[] R = {0, 0, -1, 1};
final int[] C = {1, -1, 0, 0};
public static void main(String[] args) {
int[][] M = {
{1, 1, 0, 0, 1, 0, 0, 1, 1, 0},
{1, 0, 0, 1, 0, 1, 1, 1, 1, 1},
{1, 1, 1, 0, 0, 1, 1, 1, 1, 0},
{0, 1, 1, 1, 0, 1, 1, 1, 1, 1},
{0, 0, 1, 1, 1, 1, 1, 1, 1, 0},
{1, 1, 1, 1, 1, 1, 0, 1, 1, 1},
{0, 1, 1, 1, 1, 1, 1, 0, 0, 1},
{1, 1, 1, 1, 1, 0, 0, 1, 1, 1},
{0, 1, 0, 1, 1, 0, 1, 1, 1, 1},
{1, 1, 1, 0, 1, 0, 1, 1, 1, 1}
};
System.out.println(new LongestLineofConsecutiveOneinMatrix().longestLine(M));
}
class Cell {
int h, v, d;
Cell(int h, int v, int d) {
this.h = h;
this.v = v;
this.d = d;
}
}
public int longestLine(int[][] M) {
if (M.length == 0) return 0;
int max = 0;
Cell[][] cells = new Cell[M.length][M[0].length];
for (int i = 0; i < M.length; i++) {
for (int j = 0; j < M[0].length; j++) {
int h = 0, v = 0, d = 0;
if (M[i][j] == 1) {
h = 1;
v = 1;
d = 1;
max = Math.max(max, 1);
if (j - 1 >= 0) {
Cell left = cells[i][j - 1];
if (left.h > 0) {
h += left.h;
max = Math.max(max, h);
}
}
if (i - 1 >= 0) {
Cell top = cells[i - 1][j];
if (top.v > 0) {
v += top.v;
max = Math.max(max, v);
}
}
if (i - 1 >= 0 && j - 1 >= 0) {
Cell diagonal = cells[i - 1][j - 1];
if (diagonal.d > 0) {
d += diagonal.d;
max = Math.max(max, d);
}
}
}
cells[i][j] = new Cell(h, v, d);
}
}
for (int i = 0; i < M.length; i++) {
for (int j = M[0].length - 1; j >= 0; j--) {
int h = 0, v = 0, d = 0;
if (M[i][j] == 1) {
h = 1;
v = 1;
d = 1;
max = Math.max(max, 1);
if (j + 1 < M[0].length) {
Cell left = cells[i][j + 1];
if (left.h > 0) {
h += left.h;
max = Math.max(max, h);
}
}
if (i - 1 >= 0) {
Cell top = cells[i - 1][j];
if (top.v > 0) {
v += top.v;
max = Math.max(max, v);
}
}
if (i - 1 >= 0 && j + 1 < M[0].length) {
Cell diagonal = cells[i - 1][j + 1];
if (diagonal.d > 0) {
d += diagonal.d;
max = Math.max(max, d);
}
}
}
cells[i][j] = new Cell(h, v, d);
}
}
return max;
}
}