forked from gouthampradhan/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathParallelCourses.java
90 lines (85 loc) · 2.64 KB
/
ParallelCourses.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
package depth_first_search;
import java.util.*;
/**
* Created by gouthamvidyapradhan on 26/11/2019 There are N courses, labelled from 1 to N.
*
* <p>We are given relations[i] = [X, Y], representing a prerequisite relationship between course X
* and course Y: course X has to be studied before course Y.
*
* <p>In one semester you can study any number of courses as long as you have studied all the
* prerequisites for the course you are studying.
*
* <p>Return the minimum number of semesters needed to study all courses. If there is no way to
* study all the courses, return -1.
*
* <p>Example 1:
*
* <p>Input: N = 3, relations = [[1,3],[2,3]] Output: 2 Explanation: In the first semester, courses
* 1 and 2 are studied. In the second semester, course 3 is studied. Example 2:
*
* <p>Input: N = 3, relations = [[1,2],[2,3],[3,1]] Output: -1 Explanation: No course can be studied
* because they depend on each other.
*
* <p>Note:
*
* <p>1 <= N <= 5000 1 <= relations.length <= 5000 relations[i][0] != relations[i][1] There are no
* repeated relations in the input.
*/
public class ParallelCourses {
public static void main(String[] args) {
int[][] A = {{1, 3}, {2, 3}};
System.out.println(new ParallelCourses().minimumSemesters(3, A));
}
Map<Integer, List<Integer>> graph;
Set<Integer> done;
Set<Integer> visited;
public int minimumSemesters(int N, int[][] relations) {
graph = new HashMap<>();
for (int[] E : relations) {
graph.putIfAbsent(E[0], new ArrayList<>());
graph.get(E[0]).add(E[1]);
}
done = new HashSet<>();
visited = new HashSet<>();
Stack<Integer> stack = new Stack<>();
for (int v : graph.keySet()) {
if (!done.contains(v)) {
boolean status = dfs(v, stack); // toposort and return false if a cycle is found
if (!status) return -1;
}
}
int[] DP = new int[N + 1];
int max = 0;
while (!stack.isEmpty()) {
int v = stack.pop();
List<Integer> children = graph.get(v);
if (children != null) {
for (int c : children) {
DP[c] = Math.max(DP[c], DP[v] + 1);
max = Math.max(max, DP[c]);
}
}
}
return max + 1;
}
private boolean dfs(int v, Stack<Integer> stack) {
done.add(v);
visited.add(v);
List<Integer> children = graph.get(v);
if (children != null) {
for (int c : children) {
if (!visited.contains(c)) {
if (!done.contains(c)) {
boolean status = dfs(c, stack);
if (!status) return false;
}
} else {
return false;
}
}
}
visited.remove(v);
stack.push(v);
return true;
}
}