-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathintel_hdmi_audio.c
1867 lines (1589 loc) · 50.7 KB
/
intel_hdmi_audio.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* intel_hdmi_audio.c - Intel HDMI audio driver
*
* Copyright (C) 2016 Intel Corp
* Authors: Sailaja Bandarupalli <[email protected]>
* Ramesh Babu K V <[email protected]>
* Vaibhav Agarwal <[email protected]>
* Jerome Anand <[email protected]>
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* ALSA driver for Intel HDMI audio
*/
#include <linux/types.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/pm_runtime.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <asm/cacheflush.h>
#include <sound/core.h>
#include <sound/asoundef.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/control.h>
#include <sound/jack.h>
#include <drm/drm_edid.h>
#include <drm/intel_lpe_audio.h>
#include "intel_hdmi_audio.h"
/*standard module options for ALSA. This module supports only one card*/
static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
module_param_named(index, hdmi_card_index, int, 0444);
MODULE_PARM_DESC(index,
"Index value for INTEL Intel HDMI Audio controller.");
module_param_named(id, hdmi_card_id, charp, 0444);
MODULE_PARM_DESC(id,
"ID string for INTEL Intel HDMI Audio controller.");
/*
* ELD SA bits in the CEA Speaker Allocation data block
*/
static const int eld_speaker_allocation_bits[] = {
[0] = FL | FR,
[1] = LFE,
[2] = FC,
[3] = RL | RR,
[4] = RC,
[5] = FLC | FRC,
[6] = RLC | RRC,
/* the following are not defined in ELD yet */
[7] = 0,
};
/*
* This is an ordered list!
*
* The preceding ones have better chances to be selected by
* hdmi_channel_allocation().
*/
static struct cea_channel_speaker_allocation channel_allocations[] = {
/* channel: 7 6 5 4 3 2 1 0 */
{ .ca_index = 0x00, .speakers = { 0, 0, 0, 0, 0, 0, FR, FL } },
/* 2.1 */
{ .ca_index = 0x01, .speakers = { 0, 0, 0, 0, 0, LFE, FR, FL } },
/* Dolby Surround */
{ .ca_index = 0x02, .speakers = { 0, 0, 0, 0, FC, 0, FR, FL } },
/* surround40 */
{ .ca_index = 0x08, .speakers = { 0, 0, RR, RL, 0, 0, FR, FL } },
/* surround41 */
{ .ca_index = 0x09, .speakers = { 0, 0, RR, RL, 0, LFE, FR, FL } },
/* surround50 */
{ .ca_index = 0x0a, .speakers = { 0, 0, RR, RL, FC, 0, FR, FL } },
/* surround51 */
{ .ca_index = 0x0b, .speakers = { 0, 0, RR, RL, FC, LFE, FR, FL } },
/* 6.1 */
{ .ca_index = 0x0f, .speakers = { 0, RC, RR, RL, FC, LFE, FR, FL } },
/* surround71 */
{ .ca_index = 0x13, .speakers = { RRC, RLC, RR, RL, FC, LFE, FR, FL } },
{ .ca_index = 0x03, .speakers = { 0, 0, 0, 0, FC, LFE, FR, FL } },
{ .ca_index = 0x04, .speakers = { 0, 0, 0, RC, 0, 0, FR, FL } },
{ .ca_index = 0x05, .speakers = { 0, 0, 0, RC, 0, LFE, FR, FL } },
{ .ca_index = 0x06, .speakers = { 0, 0, 0, RC, FC, 0, FR, FL } },
{ .ca_index = 0x07, .speakers = { 0, 0, 0, RC, FC, LFE, FR, FL } },
{ .ca_index = 0x0c, .speakers = { 0, RC, RR, RL, 0, 0, FR, FL } },
{ .ca_index = 0x0d, .speakers = { 0, RC, RR, RL, 0, LFE, FR, FL } },
{ .ca_index = 0x0e, .speakers = { 0, RC, RR, RL, FC, 0, FR, FL } },
{ .ca_index = 0x10, .speakers = { RRC, RLC, RR, RL, 0, 0, FR, FL } },
{ .ca_index = 0x11, .speakers = { RRC, RLC, RR, RL, 0, LFE, FR, FL } },
{ .ca_index = 0x12, .speakers = { RRC, RLC, RR, RL, FC, 0, FR, FL } },
{ .ca_index = 0x14, .speakers = { FRC, FLC, 0, 0, 0, 0, FR, FL } },
{ .ca_index = 0x15, .speakers = { FRC, FLC, 0, 0, 0, LFE, FR, FL } },
{ .ca_index = 0x16, .speakers = { FRC, FLC, 0, 0, FC, 0, FR, FL } },
{ .ca_index = 0x17, .speakers = { FRC, FLC, 0, 0, FC, LFE, FR, FL } },
{ .ca_index = 0x18, .speakers = { FRC, FLC, 0, RC, 0, 0, FR, FL } },
{ .ca_index = 0x19, .speakers = { FRC, FLC, 0, RC, 0, LFE, FR, FL } },
{ .ca_index = 0x1a, .speakers = { FRC, FLC, 0, RC, FC, 0, FR, FL } },
{ .ca_index = 0x1b, .speakers = { FRC, FLC, 0, RC, FC, LFE, FR, FL } },
{ .ca_index = 0x1c, .speakers = { FRC, FLC, RR, RL, 0, 0, FR, FL } },
{ .ca_index = 0x1d, .speakers = { FRC, FLC, RR, RL, 0, LFE, FR, FL } },
{ .ca_index = 0x1e, .speakers = { FRC, FLC, RR, RL, FC, 0, FR, FL } },
{ .ca_index = 0x1f, .speakers = { FRC, FLC, RR, RL, FC, LFE, FR, FL } },
};
static const struct channel_map_table map_tables[] = {
{ SNDRV_CHMAP_FL, 0x00, FL },
{ SNDRV_CHMAP_FR, 0x01, FR },
{ SNDRV_CHMAP_RL, 0x04, RL },
{ SNDRV_CHMAP_RR, 0x05, RR },
{ SNDRV_CHMAP_LFE, 0x02, LFE },
{ SNDRV_CHMAP_FC, 0x03, FC },
{ SNDRV_CHMAP_RLC, 0x06, RLC },
{ SNDRV_CHMAP_RRC, 0x07, RRC },
{} /* terminator */
};
/* hardware capability structure */
static const struct snd_pcm_hardware had_pcm_hardware = {
.info = (SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
.formats = (SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S24_LE |
SNDRV_PCM_FMTBIT_S32_LE),
.rates = SNDRV_PCM_RATE_32000 |
SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000 |
SNDRV_PCM_RATE_88200 |
SNDRV_PCM_RATE_96000 |
SNDRV_PCM_RATE_176400 |
SNDRV_PCM_RATE_192000,
.rate_min = HAD_MIN_RATE,
.rate_max = HAD_MAX_RATE,
.channels_min = HAD_MIN_CHANNEL,
.channels_max = HAD_MAX_CHANNEL,
.buffer_bytes_max = HAD_MAX_BUFFER,
.period_bytes_min = HAD_MIN_PERIOD_BYTES,
.period_bytes_max = HAD_MAX_PERIOD_BYTES,
.periods_min = HAD_MIN_PERIODS,
.periods_max = HAD_MAX_PERIODS,
.fifo_size = HAD_FIFO_SIZE,
};
/* Get the active PCM substream;
* Call had_substream_put() for unreferecing.
* Don't call this inside had_spinlock, as it takes by itself
*/
static struct snd_pcm_substream *
had_substream_get(struct snd_intelhad *intelhaddata)
{
struct snd_pcm_substream *substream;
unsigned long flags;
spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
substream = intelhaddata->stream_info.substream;
if (substream)
intelhaddata->stream_info.substream_refcount++;
spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
return substream;
}
/* Unref the active PCM substream;
* Don't call this inside had_spinlock, as it takes by itself
*/
static void had_substream_put(struct snd_intelhad *intelhaddata)
{
unsigned long flags;
spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
intelhaddata->stream_info.substream_refcount--;
spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
}
/* Register access functions */
static u32 had_read_register_raw(struct snd_intelhad *ctx, u32 reg)
{
return ioread32(ctx->mmio_start + ctx->had_config_offset + reg);
}
static void had_write_register_raw(struct snd_intelhad *ctx, u32 reg, u32 val)
{
iowrite32(val, ctx->mmio_start + ctx->had_config_offset + reg);
}
static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
{
if (!ctx->connected)
*val = 0;
else
*val = had_read_register_raw(ctx, reg);
}
static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
{
if (ctx->connected)
had_write_register_raw(ctx, reg, val);
}
/*
* enable / disable audio configuration
*
* The normal read/modify should not directly be used on VLV2 for
* updating AUD_CONFIG register.
* This is because:
* Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
* HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
* clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
* register. This field should be 1xy binary for configuration with 6 or
* more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
* causes the "channels" field to be updated as 0xy binary resulting in
* bad audio. The fix is to always write the AUD_CONFIG[6:4] with
* appropriate value when doing read-modify of AUD_CONFIG register.
*/
static void had_enable_audio(struct snd_intelhad *intelhaddata,
bool enable)
{
/* update the cached value */
intelhaddata->aud_config.regx.aud_en = enable;
had_write_register(intelhaddata, AUD_CONFIG,
intelhaddata->aud_config.regval);
}
/* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
static void had_ack_irqs(struct snd_intelhad *ctx)
{
u32 status_reg;
if (!ctx->connected)
return;
had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
}
/* Reset buffer pointers */
static void had_reset_audio(struct snd_intelhad *intelhaddata)
{
had_write_register(intelhaddata, AUD_HDMI_STATUS,
AUD_HDMI_STATUSG_MASK_FUNCRST);
had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
}
/*
* initialize audio channel status registers
* This function is called in the prepare callback
*/
static int had_prog_status_reg(struct snd_pcm_substream *substream,
struct snd_intelhad *intelhaddata)
{
union aud_cfg cfg_val = {.regval = 0};
union aud_ch_status_0 ch_stat0 = {.regval = 0};
union aud_ch_status_1 ch_stat1 = {.regval = 0};
ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
IEC958_AES0_NONAUDIO) >> 1;
ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
IEC958_AES3_CON_CLOCK) >> 4;
cfg_val.regx.val_bit = ch_stat0.regx.lpcm_id;
switch (substream->runtime->rate) {
case AUD_SAMPLE_RATE_32:
ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
break;
case AUD_SAMPLE_RATE_44_1:
ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
break;
case AUD_SAMPLE_RATE_48:
ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
break;
case AUD_SAMPLE_RATE_88_2:
ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
break;
case AUD_SAMPLE_RATE_96:
ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
break;
case AUD_SAMPLE_RATE_176_4:
ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
break;
case AUD_SAMPLE_RATE_192:
ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
break;
default:
/* control should never come here */
return -EINVAL;
}
had_write_register(intelhaddata,
AUD_CH_STATUS_0, ch_stat0.regval);
switch (substream->runtime->format) {
case SNDRV_PCM_FORMAT_S16_LE:
ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
break;
case SNDRV_PCM_FORMAT_S24_LE:
case SNDRV_PCM_FORMAT_S32_LE:
ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
break;
default:
return -EINVAL;
}
had_write_register(intelhaddata,
AUD_CH_STATUS_1, ch_stat1.regval);
return 0;
}
/*
* function to initialize audio
* registers and buffer confgiuration registers
* This function is called in the prepare callback
*/
static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
struct snd_intelhad *intelhaddata)
{
union aud_cfg cfg_val = {.regval = 0};
union aud_buf_config buf_cfg = {.regval = 0};
u8 channels;
had_prog_status_reg(substream, intelhaddata);
buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
buf_cfg.regx.aud_delay = 0;
had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
channels = substream->runtime->channels;
cfg_val.regx.num_ch = channels - 2;
if (channels <= 2)
cfg_val.regx.layout = LAYOUT0;
else
cfg_val.regx.layout = LAYOUT1;
if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
cfg_val.regx.packet_mode = 1;
if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
cfg_val.regx.left_align = 1;
cfg_val.regx.val_bit = 1;
/* fix up the DP bits */
if (intelhaddata->dp_output) {
cfg_val.regx.dp_modei = 1;
cfg_val.regx.set = 1;
}
had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
intelhaddata->aud_config = cfg_val;
return 0;
}
/*
* Compute derived values in channel_allocations[].
*/
static void init_channel_allocations(void)
{
int i, j;
struct cea_channel_speaker_allocation *p;
for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
p = channel_allocations + i;
p->channels = 0;
p->spk_mask = 0;
for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
if (p->speakers[j]) {
p->channels++;
p->spk_mask |= p->speakers[j];
}
}
}
/*
* The transformation takes two steps:
*
* eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
* spk_mask => (channel_allocations[]) => ai->CA
*
* TODO: it could select the wrong CA from multiple candidates.
*/
static int had_channel_allocation(struct snd_intelhad *intelhaddata,
int channels)
{
int i;
int ca = 0;
int spk_mask = 0;
/*
* CA defaults to 0 for basic stereo audio
*/
if (channels <= 2)
return 0;
/*
* expand ELD's speaker allocation mask
*
* ELD tells the speaker mask in a compact(paired) form,
* expand ELD's notions to match the ones used by Audio InfoFrame.
*/
for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
spk_mask |= eld_speaker_allocation_bits[i];
}
/* search for the first working match in the CA table */
for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
if (channels == channel_allocations[i].channels &&
(spk_mask & channel_allocations[i].spk_mask) ==
channel_allocations[i].spk_mask) {
ca = channel_allocations[i].ca_index;
break;
}
}
dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
return ca;
}
/* from speaker bit mask to ALSA API channel position */
static int spk_to_chmap(int spk)
{
const struct channel_map_table *t = map_tables;
for (; t->map; t++) {
if (t->spk_mask == spk)
return t->map;
}
return 0;
}
static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
{
int i, c;
int spk_mask = 0;
struct snd_pcm_chmap_elem *chmap;
u8 eld_high, eld_high_mask = 0xF0;
u8 high_msb;
kfree(intelhaddata->chmap->chmap);
intelhaddata->chmap->chmap = NULL;
chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
if (!chmap)
return;
dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
intelhaddata->eld[DRM_ELD_SPEAKER]);
/* WA: Fix the max channel supported to 8 */
/*
* Sink may support more than 8 channels, if eld_high has more than
* one bit set. SOC supports max 8 channels.
* Refer eld_speaker_allocation_bits, for sink speaker allocation
*/
/* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
/* eld_high & (eld_high-1): if more than 1 bit set */
/* 0x1F: 7 channels */
for (i = 1; i < 4; i++) {
high_msb = eld_high & (0x80 >> i);
if (high_msb) {
intelhaddata->eld[DRM_ELD_SPEAKER] &=
high_msb | 0xF;
break;
}
}
}
for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
spk_mask |= eld_speaker_allocation_bits[i];
}
for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
if (spk_mask == channel_allocations[i].spk_mask) {
for (c = 0; c < channel_allocations[i].channels; c++) {
chmap->map[c] = spk_to_chmap(
channel_allocations[i].speakers[
(MAX_SPEAKERS - 1) - c]);
}
chmap->channels = channel_allocations[i].channels;
intelhaddata->chmap->chmap = chmap;
break;
}
}
if (i >= ARRAY_SIZE(channel_allocations))
kfree(chmap);
}
/*
* ALSA API channel-map control callbacks
*/
static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = HAD_MAX_CHANNEL;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = SNDRV_CHMAP_LAST;
return 0;
}
static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
struct snd_intelhad *intelhaddata = info->private_data;
int i;
const struct snd_pcm_chmap_elem *chmap;
memset(ucontrol->value.integer.value, 0,
sizeof(long) * HAD_MAX_CHANNEL);
mutex_lock(&intelhaddata->mutex);
if (!intelhaddata->chmap->chmap) {
mutex_unlock(&intelhaddata->mutex);
return 0;
}
chmap = intelhaddata->chmap->chmap;
for (i = 0; i < chmap->channels; i++)
ucontrol->value.integer.value[i] = chmap->map[i];
mutex_unlock(&intelhaddata->mutex);
return 0;
}
static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
struct snd_pcm *pcm)
{
int err;
err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
NULL, 0, (unsigned long)intelhaddata,
&intelhaddata->chmap);
if (err < 0)
return err;
intelhaddata->chmap->private_data = intelhaddata;
intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
intelhaddata->chmap->chmap = NULL;
return 0;
}
/*
* Initialize Data Island Packets registers
* This function is called in the prepare callback
*/
static void had_prog_dip(struct snd_pcm_substream *substream,
struct snd_intelhad *intelhaddata)
{
int i;
union aud_ctrl_st ctrl_state = {.regval = 0};
union aud_info_frame2 frame2 = {.regval = 0};
union aud_info_frame3 frame3 = {.regval = 0};
u8 checksum = 0;
u32 info_frame;
int channels;
int ca;
channels = substream->runtime->channels;
had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
ca = had_channel_allocation(intelhaddata, channels);
if (intelhaddata->dp_output) {
info_frame = DP_INFO_FRAME_WORD1;
frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
} else {
info_frame = HDMI_INFO_FRAME_WORD1;
frame2.regx.chnl_cnt = substream->runtime->channels - 1;
frame3.regx.chnl_alloc = ca;
/* Calculte the byte wide checksum for all valid DIP words */
for (i = 0; i < BYTES_PER_WORD; i++)
checksum += (info_frame >> (i * 8)) & 0xff;
for (i = 0; i < BYTES_PER_WORD; i++)
checksum += (frame2.regval >> (i * 8)) & 0xff;
for (i = 0; i < BYTES_PER_WORD; i++)
checksum += (frame3.regval >> (i * 8)) & 0xff;
frame2.regx.chksum = -(checksum);
}
had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
/* program remaining DIP words with zero */
for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
ctrl_state.regx.dip_freq = 1;
ctrl_state.regx.dip_en_sta = 1;
had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
}
static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
{
u32 maud_val;
/* Select maud according to DP 1.2 spec */
if (link_rate == DP_2_7_GHZ) {
switch (aud_samp_freq) {
case AUD_SAMPLE_RATE_32:
maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_44_1:
maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_48:
maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_88_2:
maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_96:
maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_176_4:
maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
break;
case HAD_MAX_RATE:
maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
break;
default:
maud_val = -EINVAL;
break;
}
} else if (link_rate == DP_1_62_GHZ) {
switch (aud_samp_freq) {
case AUD_SAMPLE_RATE_32:
maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_44_1:
maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_48:
maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_88_2:
maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_96:
maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_176_4:
maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
break;
case HAD_MAX_RATE:
maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
break;
default:
maud_val = -EINVAL;
break;
}
} else
maud_val = -EINVAL;
return maud_val;
}
/*
* Program HDMI audio CTS value
*
* @aud_samp_freq: sampling frequency of audio data
* @tmds: sampling frequency of the display data
* @link_rate: DP link rate
* @n_param: N value, depends on aud_samp_freq
* @intelhaddata: substream private data
*
* Program CTS register based on the audio and display sampling frequency
*/
static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
u32 n_param, struct snd_intelhad *intelhaddata)
{
u32 cts_val;
u64 dividend, divisor;
if (intelhaddata->dp_output) {
/* Substitute cts_val with Maud according to DP 1.2 spec*/
cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
} else {
/* Calculate CTS according to HDMI 1.3a spec*/
dividend = (u64)tmds * n_param*1000;
divisor = 128 * aud_samp_freq;
cts_val = div64_u64(dividend, divisor);
}
dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
tmds, n_param, cts_val);
had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
}
static int had_calculate_n_value(u32 aud_samp_freq)
{
int n_val;
/* Select N according to HDMI 1.3a spec*/
switch (aud_samp_freq) {
case AUD_SAMPLE_RATE_32:
n_val = 4096;
break;
case AUD_SAMPLE_RATE_44_1:
n_val = 6272;
break;
case AUD_SAMPLE_RATE_48:
n_val = 6144;
break;
case AUD_SAMPLE_RATE_88_2:
n_val = 12544;
break;
case AUD_SAMPLE_RATE_96:
n_val = 12288;
break;
case AUD_SAMPLE_RATE_176_4:
n_val = 25088;
break;
case HAD_MAX_RATE:
n_val = 24576;
break;
default:
n_val = -EINVAL;
break;
}
return n_val;
}
/*
* Program HDMI audio N value
*
* @aud_samp_freq: sampling frequency of audio data
* @n_param: N value, depends on aud_samp_freq
* @intelhaddata: substream private data
*
* This function is called in the prepare callback.
* It programs based on the audio and display sampling frequency
*/
static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
struct snd_intelhad *intelhaddata)
{
int n_val;
if (intelhaddata->dp_output) {
/*
* According to DP specs, Maud and Naud values hold
* a relationship, which is stated as:
* Maud/Naud = 512 * fs / f_LS_Clk
* where, fs is the sampling frequency of the audio stream
* and Naud is 32768 for Async clock.
*/
n_val = DP_NAUD_VAL;
} else
n_val = had_calculate_n_value(aud_samp_freq);
if (n_val < 0)
return n_val;
had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
*n_param = n_val;
return 0;
}
/*
* PCM ring buffer handling
*
* The hardware provides a ring buffer with the fixed 4 buffer descriptors
* (BDs). The driver maps these 4 BDs onto the PCM ring buffer. The mapping
* moves at each period elapsed. The below illustrates how it works:
*
* At time=0
* PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
* BD | 0 | 1 | 2 | 3 |
*
* At time=1 (period elapsed)
* PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
* BD | 1 | 2 | 3 | 0 |
*
* At time=2 (second period elapsed)
* PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
* BD | 2 | 3 | 0 | 1 |
*
* The bd_head field points to the index of the BD to be read. It's also the
* position to be filled at next. The pcm_head and the pcm_filled fields
* point to the indices of the current position and of the next position to
* be filled, respectively. For PCM buffer there are both _head and _filled
* because they may be difference when nperiods > 4. For example, in the
* example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
*
* pcm_head (=1) --v v-- pcm_filled (=5)
* PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
* BD | 1 | 2 | 3 | 0 |
* bd_head (=1) --^ ^-- next to fill (= bd_head)
*
* For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
* the hardware skips those BDs in the loop.
*
* An exceptional setup is the case with nperiods=1. Since we have to update
* BDs after finishing one BD processing, we'd need at least two BDs, where
* both BDs point to the same content, the same address, the same size of the
* whole PCM buffer.
*/
#define AUD_BUF_ADDR(x) (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
#define AUD_BUF_LEN(x) (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
/* Set up a buffer descriptor at the "filled" position */
static void had_prog_bd(struct snd_pcm_substream *substream,
struct snd_intelhad *intelhaddata)
{
int idx = intelhaddata->bd_head;
int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
u32 addr = substream->runtime->dma_addr + ofs;
addr |= AUD_BUF_VALID;
if (!substream->runtime->no_period_wakeup)
addr |= AUD_BUF_INTR_EN;
had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
had_write_register(intelhaddata, AUD_BUF_LEN(idx),
intelhaddata->period_bytes);
/* advance the indices to the next */
intelhaddata->bd_head++;
intelhaddata->bd_head %= intelhaddata->num_bds;
intelhaddata->pcmbuf_filled++;
intelhaddata->pcmbuf_filled %= substream->runtime->periods;
}
/* invalidate a buffer descriptor with the given index */
static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
int idx)
{
had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
}
/* Initial programming of ring buffer */
static void had_init_ringbuf(struct snd_pcm_substream *substream,
struct snd_intelhad *intelhaddata)
{
struct snd_pcm_runtime *runtime = substream->runtime;
int i, num_periods;
num_periods = runtime->periods;
intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
/* set the minimum 2 BDs for num_periods=1 */
intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
intelhaddata->period_bytes =
frames_to_bytes(runtime, runtime->period_size);
WARN_ON(intelhaddata->period_bytes & 0x3f);
intelhaddata->bd_head = 0;
intelhaddata->pcmbuf_head = 0;
intelhaddata->pcmbuf_filled = 0;
for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
if (i < intelhaddata->num_bds)
had_prog_bd(substream, intelhaddata);
else /* invalidate the rest */
had_invalidate_bd(intelhaddata, i);
}
intelhaddata->bd_head = 0; /* reset at head again before starting */
}
/* process a bd, advance to the next */
static void had_advance_ringbuf(struct snd_pcm_substream *substream,
struct snd_intelhad *intelhaddata)
{
int num_periods = substream->runtime->periods;
/* reprogram the next buffer */
had_prog_bd(substream, intelhaddata);
/* proceed to next */
intelhaddata->pcmbuf_head++;
intelhaddata->pcmbuf_head %= num_periods;
}
/* process the current BD(s);
* returns the current PCM buffer byte position, or -EPIPE for underrun.
*/
static int had_process_ringbuf(struct snd_pcm_substream *substream,
struct snd_intelhad *intelhaddata)
{
int len, processed;
unsigned long flags;
processed = 0;
spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
for (;;) {
/* get the remaining bytes on the buffer */
had_read_register(intelhaddata,
AUD_BUF_LEN(intelhaddata->bd_head),
&len);
if (len < 0 || len > intelhaddata->period_bytes) {
dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
len);
len = -EPIPE;
goto out;
}
if (len > 0) /* OK, this is the current buffer */
break;
/* len=0 => already empty, check the next buffer */
if (++processed >= intelhaddata->num_bds) {
len = -EPIPE; /* all empty? - report underrun */
goto out;
}
had_advance_ringbuf(substream, intelhaddata);
}
len = intelhaddata->period_bytes - len;
len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
out:
spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
return len;
}
/* called from irq handler */
static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
{
struct snd_pcm_substream *substream;
substream = had_substream_get(intelhaddata);
if (!substream)
return; /* no stream? - bail out */
if (!intelhaddata->connected) {
snd_pcm_stop_xrun(substream);
goto out; /* disconnected? - bail out */
}
/* process or stop the stream */
if (had_process_ringbuf(substream, intelhaddata) < 0)
snd_pcm_stop_xrun(substream);
else
snd_pcm_period_elapsed(substream);
out:
had_substream_put(intelhaddata);
}
/*
* The interrupt status 'sticky' bits might not be cleared by
* setting '1' to that bit once...
*/
static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
{
int i;
u32 val;