-
Notifications
You must be signed in to change notification settings - Fork 0
/
gcd.c
84 lines (67 loc) · 1.38 KB
/
gcd.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#include <linux/kernel.h>
#include <linux/gcd.h>
#include <linux/export.h>
/*
* This implements the binary GCD algorithm. (Often attributed to Stein,
* but as Knuth has noted, appears in a first-century Chinese math text.)
*
* This is faster than the division-based algorithm even on x86, which
* has decent hardware division.
*/
#if !defined(CONFIG_CPU_NO_EFFICIENT_FFS) && !defined(CPU_NO_EFFICIENT_FFS)
/* If __ffs is available, the even/odd algorithm benchmarks slower. */
/**
* gcd - calculate and return the greatest common divisor of 2 unsigned longs
* @a: first value
* @b: second value
*/
unsigned long gcd(unsigned long a, unsigned long b)
{
unsigned long r = a | b;
if (!a || !b)
return r;
b >>= __ffs(b);
if (b == 1)
return r & -r;
for (;;) {
a >>= __ffs(a);
if (a == 1)
return r & -r;
if (a == b)
return a << __ffs(r);
if (a < b)
swap(a, b);
a -= b;
}
}
#else
/* If normalization is done by loops, the even/odd algorithm is a win. */
unsigned long gcd(unsigned long a, unsigned long b)
{
unsigned long r = a | b;
if (!a || !b)
return r;
/* Isolate lsbit of r */
r &= -r;
while (!(b & r))
b >>= 1;
if (b == r)
return r;
for (;;) {
while (!(a & r))
a >>= 1;
if (a == r)
return r;
if (a == b)
return a;
if (a < b)
swap(a, b);
a -= b;
a >>= 1;
if (a & r)
a += b;
a >>= 1;
}
}
#endif
EXPORT_SYMBOL_GPL(gcd);