-
Notifications
You must be signed in to change notification settings - Fork 0
/
find_bit.c
220 lines (187 loc) · 5.28 KB
/
find_bit.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/* bit search implementation
*
* Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
* Written by David Howells ([email protected])
*
* Copyright (C) 2008 IBM Corporation
* 'find_last_bit' is written by Rusty Russell <[email protected]>
* (Inspired by David Howell's find_next_bit implementation)
*
* Rewritten by Yury Norov <[email protected]> to decrease
* size and improve performance, 2015.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/bitops.h>
#include <linux/bitmap.h>
#include <linux/export.h>
#include <linux/kernel.h>
#if !defined(find_next_bit) || !defined(find_next_zero_bit) || \
!defined(find_next_and_bit)
/*
* This is a common helper function for find_next_bit, find_next_zero_bit, and
* find_next_and_bit. The differences are:
* - The "invert" argument, which is XORed with each fetched word before
* searching it for one bits.
* - The optional "addr2", which is anded with "addr1" if present.
*/
static inline unsigned long _find_next_bit(const unsigned long *addr1,
const unsigned long *addr2, unsigned long nbits,
unsigned long start, unsigned long invert)
{
unsigned long tmp;
if (unlikely(start >= nbits))
return nbits;
tmp = addr1[start / BITS_PER_LONG];
if (addr2)
tmp &= addr2[start / BITS_PER_LONG];
tmp ^= invert;
/* Handle 1st word. */
tmp &= BITMAP_FIRST_WORD_MASK(start);
start = round_down(start, BITS_PER_LONG);
while (!tmp) {
start += BITS_PER_LONG;
if (start >= nbits)
return nbits;
tmp = addr1[start / BITS_PER_LONG];
if (addr2)
tmp &= addr2[start / BITS_PER_LONG];
tmp ^= invert;
}
return min(start + __ffs(tmp), nbits);
}
#endif
#ifndef find_next_bit
/*
* Find the next set bit in a memory region.
*/
unsigned long find_next_bit(const unsigned long *addr, unsigned long size,
unsigned long offset)
{
return _find_next_bit(addr, NULL, size, offset, 0UL);
}
EXPORT_SYMBOL(find_next_bit);
#endif
#ifndef find_next_zero_bit
unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size,
unsigned long offset)
{
return _find_next_bit(addr, NULL, size, offset, ~0UL);
}
EXPORT_SYMBOL(find_next_zero_bit);
#endif
#if !defined(find_next_and_bit)
unsigned long find_next_and_bit(const unsigned long *addr1,
const unsigned long *addr2, unsigned long size,
unsigned long offset)
{
return _find_next_bit(addr1, addr2, size, offset, 0UL);
}
EXPORT_SYMBOL(find_next_and_bit);
#endif
#ifndef find_first_bit
/*
* Find the first set bit in a memory region.
*/
unsigned long find_first_bit(const unsigned long *addr, unsigned long size)
{
unsigned long idx;
for (idx = 0; idx * BITS_PER_LONG < size; idx++) {
if (addr[idx])
return min(idx * BITS_PER_LONG + __ffs(addr[idx]), size);
}
return size;
}
EXPORT_SYMBOL(find_first_bit);
#endif
#ifndef find_first_zero_bit
/*
* Find the first cleared bit in a memory region.
*/
unsigned long find_first_zero_bit(const unsigned long *addr, unsigned long size)
{
unsigned long idx;
for (idx = 0; idx * BITS_PER_LONG < size; idx++) {
if (addr[idx] != ~0UL)
return min(idx * BITS_PER_LONG + ffz(addr[idx]), size);
}
return size;
}
EXPORT_SYMBOL(find_first_zero_bit);
#endif
#ifndef find_last_bit
unsigned long find_last_bit(const unsigned long *addr, unsigned long size)
{
if (size) {
unsigned long val = BITMAP_LAST_WORD_MASK(size);
unsigned long idx = (size-1) / BITS_PER_LONG;
do {
val &= addr[idx];
if (val)
return idx * BITS_PER_LONG + __fls(val);
val = ~0ul;
} while (idx--);
}
return size;
}
EXPORT_SYMBOL(find_last_bit);
#endif
#ifdef __BIG_ENDIAN
/* include/linux/byteorder does not support "unsigned long" type */
static inline unsigned long ext2_swab(const unsigned long y)
{
#if BITS_PER_LONG == 64
return (unsigned long) __swab64((u64) y);
#elif BITS_PER_LONG == 32
return (unsigned long) __swab32((u32) y);
#else
#error BITS_PER_LONG not defined
#endif
}
#if !defined(find_next_bit_le) || !defined(find_next_zero_bit_le)
static inline unsigned long _find_next_bit_le(const unsigned long *addr1,
const unsigned long *addr2, unsigned long nbits,
unsigned long start, unsigned long invert)
{
unsigned long tmp;
if (unlikely(start >= nbits))
return nbits;
tmp = addr1[start / BITS_PER_LONG];
if (addr2)
tmp &= addr2[start / BITS_PER_LONG];
tmp ^= invert;
/* Handle 1st word. */
tmp &= ext2_swab(BITMAP_FIRST_WORD_MASK(start));
start = round_down(start, BITS_PER_LONG);
while (!tmp) {
start += BITS_PER_LONG;
if (start >= nbits)
return nbits;
tmp = addr1[start / BITS_PER_LONG];
if (addr2)
tmp &= addr2[start / BITS_PER_LONG];
tmp ^= invert;
}
return min(start + __ffs(ext2_swab(tmp)), nbits);
}
#endif
#ifndef find_next_zero_bit_le
unsigned long find_next_zero_bit_le(const void *addr, unsigned
long size, unsigned long offset)
{
return _find_next_bit_le(addr, NULL, size, offset, ~0UL);
}
EXPORT_SYMBOL(find_next_zero_bit_le);
#endif
#ifndef find_next_bit_le
unsigned long find_next_bit_le(const void *addr, unsigned
long size, unsigned long offset)
{
return _find_next_bit_le(addr, NULL, size, offset, 0UL);
}
EXPORT_SYMBOL(find_next_bit_le);
#endif
#endif /* __BIG_ENDIAN */