forked from ray-project/ray
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcleanup_experiment.py
186 lines (170 loc) · 7.36 KB
/
cleanup_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
"""
This script automates cleaning up a benchmark/experiment run of some algo
against some config (with possibly more than one tune trial,
e.g. torch=grid_search([True, False])).
Run `python cleanup_experiment.py --help` for more information.
Use on an input directory with trial contents e.g.:
..
IMPALA_BreakoutNoFrameskip-v4_0_use_pytorch=False_2020-05-11_10-17-54topr3h9k
IMPALA_BreakoutNoFrameskip-v4_0_use_pytorch=False_2020-05-11_13-59-35dqaetxnf
IMPALA_BreakoutNoFrameskip-v4_0_use_pytorch=False_2020-05-11_17-21-28tbhedw72
IMPALA_BreakoutNoFrameskip-v4_2_use_pytorch=True_2020-05-11_10-17-54lv20cgn_
IMPALA_BreakoutNoFrameskip-v4_2_use_pytorch=True_2020-05-11_13-59-35kwzhax_y
IMPALA_BreakoutNoFrameskip-v4_2_use_pytorch=True_2020-05-11_17-21-28a5j0s7za
Then run:
>> python cleanup_experiment.py --experiment-dir [parent dir w/ trial sub-dirs]
>> --output-dir [your out dir] --results-filter dumb_col_2,superfluous_col3
>> --results-max-size [max results file size in kb before(!) zipping]
The script will create one output sub-dir for each trial and only copy
the configuration and the csv results (filtered and every nth row removed
based on the given args).
"""
import argparse
import json
import os
import re
import shutil
import yaml
parser = argparse.ArgumentParser()
parser.add_argument(
"--experiment-dir",
type=str,
help="Experiment dir in which all sub-runs (seeds) are "
"located (as sub-dirs). Each sub0-run dir must contain the files: "
"params.json and progress.csv.",
)
parser.add_argument(
"--output-dir",
type=str,
help="The output dir, in which the cleaned up output will be placed.",
)
parser.add_argument(
"--results-filter",
type=str,
help="comma-separated list of csv fields to exclude.",
default="experiment_id,pid,hostname,node_ip,trial_id,hist_stats/episode_"
"reward,hist_stats/episode_lengths,experiment_tag",
)
parser.add_argument(
"--results-max-size",
type=int,
help="the max. size of the final results.csv file (in kb). Will erase "
"every nth line in the original input to reach that goal. "
"Use 0 for no limit (default=100).",
default=100,
)
def process_single_run(in_dir, out_dir):
exp_dir = os.listdir(in_dir)
# Make sure trials dir is ok.
assert (
"params.json" in exp_dir and "progress.csv" in exp_dir
), "params.json or progress.csv not found in {}!".format(in_dir)
os.makedirs(out_dir, exist_ok=True)
for file in exp_dir:
absfile = os.path.join(in_dir, file)
# Config file -> Convert to yaml and move to output dir.
if file == "params.json":
assert os.path.isfile(absfile), "{} not a file!".format(file)
with open(absfile) as fp:
contents = json.load(fp)
with open(os.path.join(out_dir, "config.yaml"), "w") as fp:
yaml.dump(contents, fp)
# Progress csv file -> Filter out some columns, cut, and write to
# output_dir.
elif file == "progress.csv":
assert os.path.isfile(absfile), "{} not a file!".format(file)
col_idx_to_filter = []
with open(absfile) as fp:
# Get column names.
col_names_orig = fp.readline().strip().split(",")
# Split by comma (abiding to quotes), filter out
# unwanted columns, then write to disk.
cols_to_filter = args.results_filter.split(",")
for i, c in enumerate(col_names_orig):
if c in cols_to_filter:
col_idx_to_filter.insert(0, i)
col_names = col_names_orig.copy()
for idx in col_idx_to_filter:
col_names.pop(idx)
absfile_out = os.path.join(out_dir, "progress.csv")
with open(absfile_out, "w") as out_fp:
print(",".join(col_names), file=out_fp)
while True:
line = fp.readline().strip()
if not line:
break
line = re.sub(
"(,{2,})",
lambda m: ",None" * (len(m.group()) - 1) + ",",
line,
)
cols = re.findall('".+?"|[^,]+', line)
if len(cols) != len(col_names_orig):
continue
for idx in col_idx_to_filter:
cols.pop(idx)
print(",".join(cols), file=out_fp)
# Reduce the size of the output file if necessary.
out_size = os.path.getsize(absfile_out)
max_size = args.results_max_size * 1024
if 0 < max_size < out_size:
# Figure out roughly every which line we have to drop.
ratio = out_size / max_size
# If ratio > 2.0, we'll have to keep only every nth line.
if ratio > 2.0:
nth = out_size // max_size
os.system(
"awk 'NR==1||NR%{}==0' {} > {}.new".format(
nth, absfile_out, absfile_out
)
)
# If ratio < 2.0 (>1.0), we'll have to drop every nth line.
else:
nth = out_size // (out_size - max_size)
os.system(
"awk 'NR==1||NR%{}!=0' {} > {}.new".format(
nth, absfile_out, absfile_out
)
)
os.remove(absfile_out)
os.rename(absfile_out + ".new", absfile_out)
# Zip progress.csv into results.zip.
zip_file = os.path.join(out_dir, "results.zip")
try:
os.remove(zip_file)
except FileNotFoundError:
pass
os.system(
"zip -j {} {}".format(zip_file, os.path.join(out_dir, "progress.csv"))
)
os.remove(os.path.join(out_dir, "progress.csv"))
# TBX events file -> Move as is.
elif re.search("^(events\\.out\\.|params\\.pkl)", file):
assert os.path.isfile(absfile), "{} not a file!".format(file)
shutil.copyfile(absfile, os.path.join(out_dir, file))
if __name__ == "__main__":
args = parser.parse_args()
exp_dir = os.listdir(args.experiment_dir)
# Loop through all sub-directories.
for i, sub_run in enumerate(sorted(exp_dir)):
abspath = os.path.join(args.experiment_dir, sub_run)
# This is a seed run.
if os.path.isdir(abspath) and re.search(
"^(\\w+?)_(\\w+?-v\\d+)(_\\d+)", sub_run
):
# Create meaningful output dir name:
# [algo]_[env]_[trial #]_[trial-config]_[date YYYY-MM-DD].
cleaned_up_out = re.sub(
"^(\\w+?)_(\\w+?-v\\d+)(_\\d+)(_.+)?(_\\d{4}-\\d{2}-\\d{2})"
"_\\d{2}-\\d{2}-\\w+",
"{:02}_\\1_\\2\\4\\5".format(i),
sub_run,
)
# Remove superflous `env=` specifier (anv always included in name).
cleaned_up_out = re.sub(
"^(.+)env=\\w+?-v\\d+,?(.+)", "\\1\\2", cleaned_up_out
)
out_path = os.path.join(args.output_dir, cleaned_up_out)
process_single_run(abspath, out_path)
# Done.
print("done")