-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_KorakianitisMixedModel.py
171 lines (133 loc) · 7.83 KB
/
test_KorakianitisMixedModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import unittest
import numpy as np
import json
import os
import logging
from ModularCirc.Models.KorakianitisMixedModel import KorakianitisMixedModel
from ModularCirc.Models.KorakianitisMixedModel_parameters import KorakianitisMixedModel_parameters
from ModularCirc.Solver import Solver
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Define global constants for tolerances
RELATIVE_TOLERANCE = 1e-3
class TestKorakianitisMixedModel(unittest.TestCase):
def setUp(self):
"""
Set up the test environment for the KorakianitisMixedModel.
This method initializes the necessary components and configurations
required for testing the KorakianitisMixedModel. It performs the following:
- Sets a random seed for reproducibility.
- Defines the base directory for file paths.
- Configures the simulation time setup parameters, including the number
of cycles, cycle duration, time step size, and minimum export cycles.
- Initializes the parameter object for the KorakianitisMixedModel.
- Creates an instance of the KorakianitisMixedModel with the specified
time setup and parameter object, suppressing console output.
- Initializes the solver for the model and configures it with the
"LSODA" method, suppressing console output.
- Loads expected output values from a JSON file for validation during tests.
- Verifies the existence of the expected output file and raises an
assertion error if the file is not found.
Raises:
AssertionError: If the expected output file is not found.
"""
# Set a random seed for reproducibility
np.random.seed(42)
# Define the base directory for file paths
self.base_dir = os.path.dirname(__file__)
# Define the duration of the simulation (no of cycles), duration of the cycle, maximum time step size, and minimum number of cycles to run
self.time_setup_dict = {
'name': 'TimeTest',
'ncycles': 40,
'tcycle': 1.0,
'dt': 0.001,
'export_min': 1
}
# Initializing the parameter object
self.parobj = KorakianitisMixedModel_parameters()
# Initializing the model
self.model = KorakianitisMixedModel(time_setup_dict=self.time_setup_dict,
parobj=self.parobj,
suppress_printing=True)
# Initializing the solver
self.solver = Solver(model=self.model)
# Solver is being setup: switching off console printing and setting the solver method to "LSODA"
self.solver.setup(suppress_output=True, method='LSODA',step=1)
# Load expected values from a JSON file
output_file_path = os.path.join(self.base_dir, 'expected_outputs', 'KorakianitisMixedModel_expected_output.json')
# Verify the file exists
self.assertTrue(os.path.exists(output_file_path), f"Expected output file not found: {output_file_path}")
with open(output_file_path, 'r') as f:
self.expected_values = json.load(f)
def test_model_initialization(self):
'''
Testing the initialization of the solver, model and parameter objects.
'''
# Verify model is an instance of <KorakianitisMixedModel>
self.assertIsInstance(self.model, KorakianitisMixedModel)
# Verify model has attribute <components>
self.assertTrue(hasattr(self.solver.model, 'components'))
# Verify <lv> is a component
self.assertIn('lv', self.solver.model.components)
# Verify correct assignment of parameters from parobj to model
self.assertEqual(self.solver.model.components['lv'].E_pas, self.parobj.components['lv']['E_pas'])
self.assertEqual(self.solver.model.components['ao'].CQ, self.parobj.components['ao']['CQ'])
def test_solver_initialization(self):
# Verify <solver> is an instance of <Solver>
self.assertIsInstance(self.solver, Solver)
# Verify the instance of <model> that is an atribute of <solver> is the same as the original <model>
self.assertEqual(self.solver.model, self.model)
def test_solver_run(self):
"""
Test the functionality of the solver by running it with different step sizes and verifying its behavior.
This test ensures that:
1. The solver can be configured and run with various step sizes.
2. The solver converges successfully for each step size.
3. The state variables of the model components are updated correctly after solving.
4. The computed results match the expected values within a specified tolerance.
"""
cycle_step_sizes = [1, 3, 5, 7] # Define the step sizes to test
for i_cycle_step_size in cycle_step_sizes:
# Use logging to print the current step size
logging.info(f"Testing solver with step size: {i_cycle_step_size}")
with self.subTest(cycle_step_size=i_cycle_step_size):
# Initializing the parameter object
self.parobj = KorakianitisMixedModel_parameters()
# Initializing the model
self.model = KorakianitisMixedModel(time_setup_dict=self.time_setup_dict,
parobj=self.parobj,
suppress_printing=True)
# Initializing the solver
self.solver = Solver(model=self.model)
# Reconfigure the solver with the current step size
self.solver.setup(suppress_output=True, method='LSODA', step=i_cycle_step_size)
# Running the model
self.solver.solve()
# Verify the solver converged
self.assertTrue(self.solver.converged or self.solver._Nconv is not None)
# Verifying the model changed the state variables stored within components.
self.assertTrue(len(self.solver.model.components['lv'].V.values) > 0)
self.assertTrue(len(self.solver.model.components['lv'].P_i.values) > 0)
# Redefine tind based on how many heart cycle have actually been necessary to reach steady state
self.tind_fin = np.arange(start=self.model.time_object.n_t-self.model.time_object.n_c,
stop=(self.model.time_object.n_t))
# Retrieve the component state variables, compute the mean of the values during the last cycle and store them within
# the new solution dictionary
new_dict = {}
for key, value in self.model.components.items():
new_dict[key] = {
'V': value.V.values[self.tind_fin].mean(),
'P_i': value.P_i.values[self.tind_fin].mean(),
'Q_i': value.Q_i.values[self.tind_fin].mean()
}
# Check that the values are the same as the expected values
expected_ndarray = np.array(
[self.expected_values["results"][str(i_cycle_step_size)][key1][key2] for key1 in new_dict.keys() for key2 in new_dict[key1].keys()]
)
new_ndarray = np.array([new_dict[key1][key2] for key1 in new_dict.keys() for key2 in new_dict[key1].keys()])
test_ndarray = np.where(np.abs(expected_ndarray) > 1e-6,
np.abs((expected_ndarray - new_ndarray) / expected_ndarray),
np.abs((expected_ndarray - new_ndarray)))
self.assertTrue((test_ndarray < RELATIVE_TOLERANCE).all())
if __name__ == '__main__':
unittest.main()