-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_Solver.py
391 lines (294 loc) · 16.4 KB
/
test_Solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import unittest
import numpy as np
import json
import os
import logging
from ModularCirc.Models.OdeModel import OdeModel
from ModularCirc.Solver import Solver
from ModularCirc.Models.KorakianitisMixedModel import KorakianitisMixedModel
from ModularCirc.Models.KorakianitisMixedModel_parameters import KorakianitisMixedModel_parameters
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Define global constants for tolerances
RELATIVE_TOLERANCE = 1e-3
class TestSolver(unittest.TestCase):
"""
TestSolver is a unittest.TestCase class designed to test the functionality of the Solver class and its
integration with the KorakianitisMixedModel.
Methods
-------
setUp():
Initializes the test environment, including setting a random seed, defining the time setup dictionary,
initializing the parameter object, model, and solver, and setting up the solver.
test_solver_initialization():
Verifies that the solver is correctly initialized and that the model is correctly assigned to the solver.
test_solver_setup():
Verifies the setup attributes of the solver and ensures that the generated functions are not None.
test_initialize_by_function():
Tests the initialize_by_function() method of the solver, ensuring it accepts the expected input and
returns the expected output.
test_optimize():
Tests the optimize() method of the solver, ensuring it accepts the expected input and can run with it.
test_pv_dfdt_update():
Tests the pv_dfdt_update() method of the solver, ensuring it accepts the expected input and the output
matches the expected output.
test_s_u_update():
Tests the s_u_update() method of the solver, ensuring it accepts the expected input and the output
matches the expected output.
test_solver_solve():
Tests the solve() method of the solver, ensuring the solver converges and the output matches the
expected values.
"""
def setUp(self):
"""
Set up the test environment for the Solver tests.
This method initializes the necessary components for testing the Solver class:
- Sets a random seed for reproducibility.
- Defines the time setup dictionary with parameters for the simulation.
- Initializes the parameter object using KorakianitisMixedModel_parameters.
- Initializes the KorakianitisMixedModel with the time setup dictionary and parameter object.
- Initializes the Solver with the model.
- Sets up the solver with the specified method and suppresses output.
Attributes:
time_setup_dict (dict): Dictionary containing time setup parameters.
parobj (KorakianitisMixedModel_parameters): Parameter object for the model.
model (KorakianitisMixedModel): The initialized model for the simulation.
solver (Solver): The initialized solver for the model.
"""
# Set a random seed for reproducibility
np.random.seed(42)
# Define the base directory for file paths
self.base_dir = os.path.dirname(__file__)
# Define the time setup dictionary
self.time_setup_dict = {
'name': 'TimeTest',
'ncycles': 40,
'tcycle': 1.0,
'dt': 0.001,
'export_min': 1
}
# Initialize the parameter object
self.parobj = KorakianitisMixedModel_parameters()
# Initialize the model
self.model = KorakianitisMixedModel(time_setup_dict=self.time_setup_dict,
parobj=self.parobj,
suppress_printing=True)
# Initialize the solver
self.solver = Solver(model=self.model)
# Setup the solver
self.solver.setup(suppress_output=True, method='LSODA', step=1)
def test_solver_initialization(self):
"""
Test the initialization of the solver.
This test verifies that the solver is correctly initialized as an instance of the
Solver class and that the model is correctly assigned to the solver.
Assertions:
- The solver is an instance of the Solver class.
- The model assigned to the solver is the expected model.
"""
# Verify solver is an instance of Solver
self.assertIsInstance(self.solver, Solver)
# Verify model is correctly assigned
self.assertEqual(self.solver.model, self.model)
def test_solver_setup(self):
"""
Test the setup of the solver.
This test verifies that the solver's setup attributes and generated functions
are correctly initialized. It checks the following:
- The solver's method is set to 'LSODA'.
- The solver's optimize_secondary_sv attribute is set to False.
- The solver's pv_dfdt_global function is not None.
- The solver's s_u_update function is not None.
- The solver's optimize function is not None.
- The solver's initialize_by_function function is not None.
"""
# Verify the setup attributes
self.assertEqual(self.solver._method, 'LSODA')
self.assertTrue(self.solver._optimize_secondary_sv is False)
# Verify the generated functions
self.assertIsNotNone(self.solver.pv_dfdt_global)
self.assertIsNotNone(self.solver.s_u_update)
self.assertIsNotNone(self.solver.optimize)
self.assertIsNotNone(self.solver.initialize_by_function)
def test_initialize_by_function(self):
"""
Test the `initialize_by_function` method of the solver.
This test verifies the following:
- The `initialize_by_function` method accepts the expected input and returns the expected output.
- The output of the `initialize_by_function` method is of type `np.ndarray`.
- The `initialize_by_function` method raises an `IndexError` when provided with a random input that is not the expected input.
Test steps:
1. Load the expected input values from an npy file.
2. Verify that the `initialize_by_function` method returns an output of type `np.ndarray` when provided with the expected input.
3. Generate a random input that is not the expected input.
4. Verify that the `initialize_by_function` method raises an `IndexError` when provided with the random input.
"""
# Test initialize_by_function():
# Verify that initialize_by_function accepts the expected input, and returns the expected output
# Construct the file path dynamically
input_file_path = os.path.join(self.base_dir, 'inputs_for_tests', 'asd_first_row.npy')
# Verify the file exists
self.assertTrue(os.path.exists(input_file_path), f"Input file not found: {input_file_path}")
# Load the expected values from the file
expected_input = np.load(input_file_path)
# Verify the function returns the output in the right data type
self.assertIsInstance(self.solver.initialize_by_function(y=expected_input), np.ndarray)
# Generate a random input that is not the expected input
random_input = np.random.rand(1, 1)
# Verify that the function does not accept the random input
with self.assertRaises(IndexError):
self.solver.initialize_by_function(y=random_input)
def test_optimize(self):
"""
Test the optimize() method of the Solver class.
This test verifies that the optimize() method accepts the expected input
and can run with the provided input data.
Steps:
1. Load the expected input values from a .npz file.
2. Verify that the optimize() method can run with the expected input.
Expected input:
- y_temp: Temporary y values for optimization. Called y_temp to reflect the
name of the variable in the optimize() method.
- keys4: Keys required for optimization. Called keys4 to reflect the name of the
variable in the optimize() method.
Raises:
AssertionError: If the optimize() method does not accept the expected input
or fails to run with the provided input data.
"""
# Test optimize():
# Verify that optimize() accepts the expected input
# Construct the file path dynamically
input_file_path = os.path.join(self.base_dir, 'inputs_for_tests', 'inputs_for_optimize.npz')
# Verify the file exists
self.assertTrue(os.path.exists(input_file_path), f"Input file not found: {input_file_path}")
# Load the expected values from an npz file
expected_input = np.load(input_file_path)
# Verify the function can run with the expected input
self.solver.optimize(y=expected_input['y_temp'], keys=expected_input['keys4'])
def test_pv_dfdt_update(self):
"""
Test the `pv_dfdt_update` method of the solver.
This test verifies that the `pv_dfdt_update` method:
1. Accepts the expected input.
2. Can run with the expected input without errors.
3. Produces output that matches the expected output.
Steps:
- Load the initial conditions from a .npy file.
- Run the `pv_dfdt_update` method with the loaded initial conditions.
- Load the expected output from a .npy file.
- Compare the method's output to the expected output using `np.testing.assert_allclose`.
Raises:
AssertionError: If the output of `pv_dfdt_update` does not match the expected output.
"""
# Test pv_dfdt_update():
# Verify that pv_dfdt_update() accepts the expected input
# Construct the file path dynamically
input_file_path = os.path.join(self.base_dir, 'inputs_for_tests', 'inputs_for_pv_dfdt_update.npy')
# Verify the file exists
self.assertTrue(os.path.exists(input_file_path), f"Input file not found: {input_file_path}")
# Load the expected values from an npy file
y0 = np.load(input_file_path)
# Verify the function can run with the expected input
pv_dfdt_result = self.solver.pv_dfdt_global(t=0, y=y0)
# Verify the output matches the expected output
# Construct the file path dynamically
output_file_path = os.path.join(self.base_dir, 'expected_outputs', 'pv_dfdt_update_expected_output.npy')
# Verify the file exists
self.assertTrue(os.path.exists(output_file_path), f"Expected output file not found: {output_file_path}")
expected_output = np.load(output_file_path)
np.testing.assert_allclose(pv_dfdt_result, expected_output)
def test_s_u_update(self):
"""
Test the s_u_update() method of the solver.
This test verifies the following:
1. The s_u_update() method accepts the expected input.
2. The s_u_update() method can run with the expected input.
3. The output of the s_u_update() method matches the expected output.
Steps:
- Load the expected input values from a .npy file.
- Call the s_u_update() method with the loaded input.
- Load the expected output values from a .npy file.
- Compare the actual output with the expected output using np.testing.assert_allclose.
Raises:
AssertionError: If the actual output does not match the expected output.
"""
# Test s_u_update():
# Verify that s_u_update() accepts the expected input
# Construct the file path dynamically
input_file_path = os.path.join(self.base_dir, 'inputs_for_tests', 'inputs_for_s_u_update.npy')
# Verify the file exists
self.assertTrue(os.path.exists(input_file_path), f"Input file not found: {input_file_path}")
# Load the expected values from an npy file
y_temp = np.load(input_file_path)
# Verify the function can run with the expected input
s_u_result = self.solver.s_u_update(t=0.0, y=y_temp)
# Construct the file path dynamically
output_file_path = os.path.join(self.base_dir, 'expected_outputs', 's_u_update_expected_output.npy')
# Verify the file exists
self.assertTrue(os.path.exists(output_file_path), f"Expected output file not found: {output_file_path}")
expected_output = np.load(output_file_path)
np.testing.assert_allclose(s_u_result, expected_output)
def test_solver_solve(self):
"""
Test the `solve` method of the solver with different step sizes.
This test performs the following steps for each step size:
1. Configures the solver with the given step size.
2. Solves the system using the solver.
3. Verifies that the solver has converged.
7. Compares the new solution dictionary values with the expected values and asserts that they are
within an acceptable tolerance.
Raises:
AssertionError: If the solver did not converge or if the computed values do not match the expected
values within the tolerance.
"""
# Load the expected values from a JSON file:
output_file_path = os.path.join(self.base_dir, 'expected_outputs', 'KorakianitisMixedModel_expected_output.json')
# Verify the file exists
self.assertTrue(os.path.exists(output_file_path), f"Expected output file not found: {output_file_path}")
with open(output_file_path, 'r') as f:
self.expected_values = json.load(f)
cycle_step_sizes = [1, 3, 5, 7] # Define the step sizes to test
for i_cycle_step_size in cycle_step_sizes:
# Use logging to print the current step size
logging.info(f"Testing solver with step size: {i_cycle_step_size}")
with self.subTest(cycle_step_size=i_cycle_step_size):
# Initialize the parameter object
self.parobj = KorakianitisMixedModel_parameters()
# Initialize the model
self.model = KorakianitisMixedModel(time_setup_dict=self.time_setup_dict,
parobj=self.parobj,
suppress_printing=True)
# Initialize the solver
self.solver = Solver(model=self.model)
# Reconfigure the solver with the current step size
self.solver.setup(suppress_output=True, method='LSODA', step=i_cycle_step_size)
# Running the model
self.solver.solve()
# Verify the solver converged
self.assertTrue(self.solver.converged or self.solver._Nconv is not None)
# Redefine tind based on how many heart cycle have actually been necessary to reach steady state
tind_fin = np.arange(start=self.model.time_object.n_t-self.model.time_object.n_c,
stop=(self.model.time_object.n_t))
# Retrieve the component state variables, compute the mean of the values during the last cycle and store them within
# the new solution dictionary
new_dict = {}
for key, value in self.model.components.items():
new_dict[key] = {
'V': value.V.values[tind_fin].mean(),
'P_i': value.P_i.values[tind_fin].mean(),
'Q_i': value.Q_i.values[tind_fin].mean()
}
# Check that the values are the same as the expected values
expected_ndarray = np.array(
[self.expected_values["results"][str(i_cycle_step_size)][key1][key2] for key1 in new_dict.keys() for key2 in new_dict[key1].keys()]
)
new_ndarray = np.array([new_dict[key1][key2] for key1 in new_dict.keys() for key2 in new_dict[key1].keys()])
test_ndarray = np.where(
np.abs(expected_ndarray) > 1e-6,
np.abs((expected_ndarray - new_ndarray) / expected_ndarray),
np.abs((expected_ndarray - new_ndarray))
)
self.assertTrue((test_ndarray < RELATIVE_TOLERANCE).all(),
f"Test failed for step size {i_cycle_step_size}: {test_ndarray}")
if __name__ == '__main__':
unittest.main()