forked from WenmuZhou/PytorchOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_params_compute_diff.py
230 lines (199 loc) · 8.98 KB
/
convert_params_compute_diff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# -*- coding: utf-8 -*-
# @Time : 2023/8/26 11:34
# @Author : zhoujun
import os
import cv2
os.environ["KMP_DUPLICATE_LIB_OK"] = "True"
import yaml
import numpy as np
import paddle
import torch
from torchocr.modeling.architectures import build_model
from ppocr.modeling.architectures import build_model as build_model_paddle
from ppocr.postprocess import build_post_process
def load_config(file_path):
_, ext = os.path.splitext(file_path)
assert ext in [".yml", ".yaml"], "only support yaml files for now"
config = yaml.load(open(file_path, "rb"), Loader=yaml.Loader)
return config
def init_head(config):
global_config = config["Global"]
post_process_class = build_post_process(config["PostProcess"], global_config)
# build model
# for rec algorithm
if hasattr(post_process_class, "character"):
char_num = len(getattr(post_process_class, "character"))
if config["Architecture"]["algorithm"] in [
"Distillation",
]: # distillation model
for key in config["Architecture"]["Models"]:
if (
config["Architecture"]["Models"][key]["Head"]["name"] == "MultiHead"
): # for multi head
if config["PostProcess"]["name"] == "DistillationSARLabelDecode":
char_num = char_num - 2
if config["PostProcess"]["name"] == "DistillationNRTRLabelDecode":
char_num = char_num - 3
out_channels_list = {}
out_channels_list["CTCLabelDecode"] = char_num
# update SARLoss params
if (
list(config["Loss"]["loss_config_list"][-1].keys())[0]
== "DistillationSARLoss"
):
config["Loss"]["loss_config_list"][-1]["DistillationSARLoss"][
"ignore_index"
] = (char_num + 1)
out_channels_list["SARLabelDecode"] = char_num + 2
elif (
list(config["Loss"]["loss_config_list"][-1].keys())[0]
== "DistillationNRTRLoss"
):
out_channels_list["NRTRLabelDecode"] = char_num + 3
config["Architecture"]["Models"][key]["Head"][
"out_channels_list"
] = out_channels_list
else:
config["Architecture"]["Models"][key]["Head"][
"out_channels"
] = char_num
elif config["Architecture"]["Head"]["name"] == "MultiHead": # for multi head
if config["PostProcess"]["name"] == "SARLabelDecode":
char_num = char_num - 2
if config["PostProcess"]["name"] == "NRTRLabelDecode":
char_num = char_num - 3
out_channels_list = {}
out_channels_list["CTCLabelDecode"] = char_num
# update SARLoss params
if list(config["Loss"]["loss_config_list"][1].keys())[0] == "SARLoss":
if config["Loss"]["loss_config_list"][1]["SARLoss"] is None:
config["Loss"]["loss_config_list"][1]["SARLoss"] = {
"ignore_index": char_num + 1
}
else:
config["Loss"]["loss_config_list"][1]["SARLoss"]["ignore_index"] = (
char_num + 1
)
out_channels_list["SARLabelDecode"] = char_num + 2
elif list(config["Loss"]["loss_config_list"][1].keys())[0] == "NRTRLoss":
out_channels_list["NRTRLabelDecode"] = char_num + 3
config["Architecture"]["Head"]["out_channels_list"] = out_channels_list
else: # base rec model
config["Architecture"]["Head"]["out_channels"] = char_num
if config["PostProcess"]["name"] == "SARLabelDecode": # for SAR model
config["Loss"]["ignore_index"] = char_num - 1
return config
def conver_params(model_config, paddle_params_path, tmp_dir, show_log=False):
from padiff import assign_weight, create_model
torch_model = build_model(model_config)
paddle_model = build_model_paddle(model_config)
if os.path.exists(paddle_params_path):
paddle_model.set_state_dict(paddle.load(paddle_params_path))
torch_model.eval()
paddle_model.eval()
torch_model_warp = create_model(torch_model)
paddle_model_warp = create_model(paddle_model)
torch_model_warp.auto_layer_map("base", show_log=show_log)
paddle_model_warp.auto_layer_map("raw", show_log=show_log)
assign_weight(torch_model_warp, paddle_model_warp)
# for recv4 rec
# torch2paddle(torch_model, paddle_model)
if not os.path.exists(paddle_params_path):
paddle_params_path = os.path.join(tmp_dir, 'paddle.pdparams')
paddle.save(paddle_model.state_dict(), paddle_params_path)
print(f"save default paddle params success to {paddle_params_path}")
torch_params_path = paddle_params_path.replace(".pdparams", ".pth")
torch.save({"state_dict": torch_model.state_dict()}, torch_params_path)
print(f"save convert torch params to {torch_params_path}")
return paddle_params_path, torch_params_path
def torch2paddle(torch_model: torch.nn.Module, paddle_model: paddle.nn.Layer):
paddle_state_dict = paddle_model.state_dict()
torch_dict = torch_model.state_dict()
# paddle_state_dict = paddle.load(paddle_model)
fc_names = ["qkv",'fc', 'kv', 'tgt_word_prj','q','out_proj','linear','proj']
torch_state_dict = {}
for k in paddle_state_dict:
v = paddle_state_dict[k].detach().cpu().numpy()
flag = [i in k for i in fc_names]
if any(flag) and "weight" in k: # ignore bias
new_shape = [1, 0] + list(range(2, v.ndim))
print(f"name: {k}, ori shape: {v.shape}, new shape: {v.transpose(new_shape).shape}")
v = v.transpose(new_shape)
k = k.replace("_variance", "running_var")
k = k.replace("_mean", "running_mean")
if torch_dict[k].numpy().shape != v.shape:
print(torch_dict[k].numpy().shape, v.shape)
torch_state_dict[k] = torch.from_numpy(v)
for k in torch_state_dict:
if k not in torch_model.state_dict():
print(f'{k} is not in torch model')
for k in torch_model.state_dict():
if 'num_batches_tracked' in k:
continue
if k not in torch_state_dict:
print(f'{k} is not in torch params')
torch_model.load_state_dict(torch_state_dict)
def get_input(w, h, color=True):
img = cv2.imread("doc/imgs/1.jpg", 1 if color else 0)
img = cv2.resize(img, (w, h))
if len(img.shape) == 2:
img = np.expand_dims(img, axis=2)
img = np.expand_dims(img, 0).transpose([0, 3, 1, 2])
img = img.astype("float32")
img /= 255
img-=0.5
img/=0.5
return img
def diff_func(torch_out, paddle_out, prex=""):
if isinstance(torch_out, dict):
for k in torch_out:
diff_func(torch_out[k], paddle_out[k], f"{prex}_{k}")
elif isinstance(torch_out, list):
for k in range(len(torch_out)):
diff_func(torch_out[k], paddle_out[k], f"{prex}_{k}")
elif isinstance(torch_out, torch.Tensor):
diff = paddle_out.detach().cpu().numpy() - torch_out.detach().cpu().numpy()
print(prex[1:], np.abs(diff).mean())
def paddle_infer(config, input_np, device, params_path):
print(f"paddle version: {paddle.__version__}")
print(f"input shape of paddle is {input_np.shape}")
paddle.device.set_device(device)
x = paddle.to_tensor(input_np)
model = build_model_paddle(config)
model.set_state_dict(paddle.load(params_path))
model.eval()
y = model(x)
return y
def torch_infer(config, input_np, device, params_path):
print(f"torch version: {torch.__version__}")
print(f"input shape of torch is {input_np.shape}")
if device == 'gpu':
device = 'cuda'
x = torch.from_numpy(input_np)
x = x.to(device)
model = build_model(config)
model.load_state_dict(torch.load(params_path)["state_dict"])
model.eval()
model = model.to(device)
y = model(x)
return y
def main():
device = "cpu"
input_np = get_input(320, 48, True)
tmp_dir = './tmp'
os.makedirs(tmp_dir, exist_ok=True)
config_path = "configs/rec/PP-OCRv3/ch_PP-OCRv3_rec.yml"
paddle_params_path = r''
config = load_config(config_path)
config = init_head(config)
model_config = config["Architecture"]
print(model_config)
# step 1 convert params and run paddle and save result
paddle_params_path, torch_params_path = conver_params(model_config, paddle_params_path, tmp_dir, show_log=False)
# step 2 run paddle
paddle_out = paddle_infer(model_config, input_np, device, paddle_params_path)
# step 2 run torch
torch_out = torch_infer(model_config, input_np, device, torch_params_path)
diff_func(torch_out, paddle_out)
if __name__ == "__main__":
main()