forked from CSAILVision/gandissect
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathablate.py
259 lines (235 loc) · 10.7 KB
/
ablate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import torch, sys, os, argparse, textwrap, numbers, numpy, json, PIL
from torchvision import transforms
from torch.utils.data import TensorDataset
from netdissect.progress import default_progress, post_progress, desc_progress
from netdissect.progress import verbose_progress, print_progress
from netdissect.nethook import edit_layers
from netdissect.gandissect import standard_z_sample, GanImageSegmenter
from netdissect.autoeval import autoimport_eval
from netdissect.easydict import EasyDict
help_epilog = '''\
Example:
python -m netdissect.ablation \
--segmenter "netdissect.GanImageSegmenter(segvocab='lowres', segsizes=[160,288], segdiv='quad')" \
--model "proggan.from_pth_file('models/lsun_models/${SCENE}_lsun.pth')" \
--outdir dissect/dissectdir \
--classes mirror coffeetable tree \
--layers layer1 layer2 layer3 layer4 layer5 layer6 layer7 layer8 \
layer9 layer10 \
--size 1000
Output layout:
dissectdir/layer5/ablation/mirror-iqr.json
{ class: "mirror",
classnum: 43,
pixel_total: 41342300,
class_pixels: 1234531,
layer: "layer5",
ranking: "mirror-iqr",
ablation_units: [341, 23, 12, 142, 83, ...]
ablation_pixels: [143242, 132344, 429931, ...]
}
'''
def main():
# Training settings
def strpair(arg):
p = tuple(arg.split(':'))
if len(p) == 1:
p = p + p
return p
parser = argparse.ArgumentParser(description='Net dissect utility',
epilog=textwrap.dedent(help_epilog),
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('--model', type=str, default=None,
help='constructor for the model to test')
parser.add_argument('--pthfile', type=str, default=None,
help='filename of .pth file for the model')
parser.add_argument('--outdir', type=str, default='dissect',
help='directory for dissection output')
parser.add_argument('--layers', type=strpair, nargs='+',
help='space-separated list of layer names to edit' +
', in the form layername[:reportedname]')
parser.add_argument('--classes', type=str, nargs='+',
help='space-separated list of class names to ablate')
parser.add_argument('--metric', type=str, default='iou',
help='ordering metric for selecting units')
parser.add_argument('--startcount', type=int, default=1,
help='number of units to ablate')
parser.add_argument('--unitcount', type=int, default=30,
help='number of units to ablate')
parser.add_argument('--segmenter', type=str, default='dataset/broden',
help='directory containing segmentation dataset')
parser.add_argument('--netname', type=str, default=None,
help='name for network in generated reports')
parser.add_argument('--batch_size', type=int, default=5,
help='batch size for forward pass')
parser.add_argument('--size', type=int, default=1000,
help='number of images to test')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA usage')
parser.add_argument('--quiet', action='store_true', default=False,
help='silences console output')
if len(sys.argv) == 1:
parser.print_usage(sys.stderr)
sys.exit(1)
args = parser.parse_args()
# Set up console output
verbose_progress(not args.quiet)
# Speed up pytorch
torch.backends.cudnn.benchmark = True
# Construct the network
if args.model is None:
print_progress('No model specified')
sys.exit(1)
# Set up CUDA
args.cuda = not args.no_cuda and torch.cuda.is_available()
if args.cuda:
torch.backends.cudnn.benchmark = True
model = autoimport_eval(args.model)
# Unwrap any DataParallel-wrapped model
if isinstance(model, torch.nn.DataParallel):
model = next(model.children())
# Load its state dict
meta = {}
if args.pthfile is None:
print_progress('Dissecting model without pth file.')
else:
data = torch.load(args.pthfile)
if 'state_dict' in data:
meta = {}
for key in data:
if isinstance(data[key], numbers.Number):
meta[key] = data[key]
data = data['state_dict']
model.load_state_dict(data)
# Instrument it and prepare it for eval
if not args.layers:
# Skip wrappers with only one named modele
container = model
prefix = ''
while len(list(container.named_children())) == 1:
name, container = next(container.named_children())
prefix += name + '.'
# Default to all nontrivial top-level layers except last.
args.layers = [prefix + name
for name, module in container.named_children()
if type(module).__module__ not in [
# Skip ReLU and other activations.
'torch.nn.modules.activation',
# Skip pooling layers.
'torch.nn.modules.pooling']
][:-1]
print_progress('Defaulting to layers: %s' % ' '.join(args.layers))
edit_layers(model, args.layers)
model.eval()
if args.cuda:
model.cuda()
# Set up the output directory, verify write access
if args.outdir is None:
args.outdir = os.path.join('dissect', type(model).__name__)
print_progress('Writing output into %s.' % args.outdir)
os.makedirs(args.outdir, exist_ok=True)
train_dataset = None
# Examine first conv in model to determine input feature size.
first_layer = [c for c in model.modules()
if isinstance(c, (torch.nn.Conv2d, torch.nn.ConvTranspose2d,
torch.nn.Linear))][0]
# 4d input if convolutional, 2d input if first layer is linear.
if isinstance(first_layer, (torch.nn.Conv2d, torch.nn.ConvTranspose2d)):
sample = standard_z_sample(
args.size, first_layer.in_channels)[:,:,None,None]
train_sample = standard_z_sample(
args.size, first_layer.in_channels, seed=2)[:,:,None,None]
else:
sample = standard_z_sample(args.size, first_layer.in_features)
train_sample = standard_z_sample(args.size, first_layer.in_features,
seed=2)
dataset = TensorDataset(sample)
train_dataset = TensorDataset(train_sample)
recovery = autoimport_eval(args.segmenter)
# Now do the actual work.
device = next(model.parameters()).device
labelnames, catnames = (
recovery.get_label_and_category_names(dataset))
label_category = [catnames.index(c) for l, c in labelnames]
labelnum_from_name = {n[0]: i for i, n in enumerate(labelnames)}
segloader = torch.utils.data.DataLoader(dataset,
batch_size=args.batch_size, num_workers=10,
pin_memory=(device.type == 'cuda'))
with open(os.path.join(args.outdir, 'dissect.json'), 'r') as f:
dissect = EasyDict(json.load(f))
# Index the dissection layers by layer name.
dissect_layer = {lrec.layer: lrec for lrec in dissect.layers}
# First, collect a baseline
for l in model.ablation:
model.ablation[l] = None
baseline = count_segments(recovery, segloader, model)
# For each sort-order, do an ablation
progress = default_progress()
for classname in progress(args.classes):
post_progress(c=classname)
for layername in progress(model.ablation):
post_progress(l=layername)
rankname = '%s-%s' % (classname, args.metric)
measurements = {}
classnum = labelnum_from_name[classname]
try:
ranking = next(r for r in dissect_layer[layername].rankings
if r.name == rankname)
except:
print('%s not found' % rankname)
sys.exit(1)
ordering = numpy.argsort(ranking.score)
# Check if already done
ablationdir = os.path.join(args.outdir, layername, 'ablation')
if os.path.isfile(os.path.join(ablationdir, '%s.json'%rankname)):
with open(os.path.join(ablationdir, '%s.json'%rankname)) as f:
data = EasyDict(json.load(f))
# If the unit ordering is not the same, something is wrong
if not all(a == o
for a, o in zip(data.ablation_units, ordering)):
import pdb; pdb.set_trace();
continue
if len(data.ablation_effects) >= args.unitcount:
continue # file already done.
measurements = data.ablation_effects
for count in progress(range(args.startcount,
min(args.unitcount, len(ordering))+1), desc='units'):
if str(count) in measurements:
continue
ablation = numpy.zeros(len(ranking.score), dtype='float32')
ablation[ordering[:count]] = 1
for l in model.ablation:
model.ablation[l] = ablation if layername == l else None
m = count_segments(recovery, segloader, model)[classnum].item()
print_progress('%s %s %d units (#%d), %g -> %g' %
(layername, rankname, count,
ordering[count - 1].item(),
baseline[classnum].item(), m))
measurements[str(count)] = m
os.makedirs(ablationdir, exist_ok=True)
with open(os.path.join(ablationdir, '%s.json'%rankname), 'w') as f:
json.dump(dict(
classname=classname,
classnum=classnum,
baseline=baseline[classnum].item(),
layer=layername,
metric=args.metric,
ablation_units=ordering.tolist(),
ablation_effects=measurements), f)
def count_segments(recovery, loader, model):
total_bincount = 0
data_size = 0
progress = default_progress()
for i, batch in enumerate(progress(loader)):
im, seg, batch_label_counts, features, scale_offset_map = (
recovery.recover_im_seg_bc_and_features(
batch, model))
data_size += seg.shape[0] * seg.shape[2] * seg.shape[3]
total_bincount += batch_label_counts.float().sum(0)
normalized_bincount = total_bincount / data_size
return normalized_bincount
# Many models use this normalization.
IMAGE_MEAN = [0.485, 0.456, 0.406]
IMAGE_STDEV = [0.229, 0.224, 0.225]
if __name__ == '__main__':
main()