forked from tidyverse/ggplot2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot.r
183 lines (170 loc) · 5.99 KB
/
plot.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#' Create a new ggplot
#'
#' `ggplot()` initializes a ggplot object. It can be used to
#' declare the input data frame for a graphic and to specify the
#' set of plot aesthetics intended to be common throughout all
#' subsequent layers unless specifically overridden.
#'
#' `ggplot()` is used to construct the initial plot object,
#' and is almost always followed by `+` to add component to the
#' plot. There are three common ways to invoke `ggplot`:
#'
#' \enumerate{
#' \item `ggplot(df, aes(x, y, <other aesthetics>))`
#' \item `ggplot(df)`
#' \item `ggplot()`
#' }
#'
#' The first method is recommended if all layers use the same
#' data and the same set of aesthetics, although this method
#' can also be used to add a layer using data from another
#' data frame. See the first example below. The second
#' method specifies the default data frame to use for the plot,
#' but no aesthetics are defined up front. This is useful when
#' one data frame is used predominantly as layers are added,
#' but the aesthetics may vary from one layer to another. The
#' third method initializes a skeleton `ggplot` object which
#' is fleshed out as layers are added. This method is useful when
#' multiple data frames are used to produce different layers, as
#' is often the case in complex graphics.
#'
#' @param data Default dataset to use for plot. If not already a data.frame,
#' will be converted to one by [fortify()]. If not specified,
#' must be supplied in each layer added to the plot.
#' @param mapping Default list of aesthetic mappings to use for plot.
#' If not specified, must be supplied in each layer added to the plot.
#' @param ... Other arguments passed on to methods. Not currently used.
#' @param environment If a variable defined in the aesthetic mapping is not
#' found in the data, ggplot will look for it in this environment. It defaults
#' to using the environment in which `ggplot()` is called.
#' @export
#' @examples
#' # Generate some sample data, then compute mean and standard deviation
#' # in each group
#' df <- data.frame(
#' gp = factor(rep(letters[1:3], each = 10)),
#' y = rnorm(30)
#' )
#' ds <- plyr::ddply(df, "gp", plyr::summarise, mean = mean(y), sd = sd(y))
#'
#' # The summary data frame ds is used to plot larger red points on top
#' # of the raw data. Note that we don't need to supply `data` or `mapping`
#' # in each layer because the defaults from ggplot() are used.
#' ggplot(df, aes(gp, y)) +
#' geom_point() +
#' geom_point(data = ds, aes(y = mean), colour = 'red', size = 3)
#'
#' # Same plot as above, declaring only the data frame in ggplot().
#' # Note how the x and y aesthetics must now be declared in
#' # each geom_point() layer.
#' ggplot(df) +
#' geom_point(aes(gp, y)) +
#' geom_point(data = ds, aes(gp, mean), colour = 'red', size = 3)
#'
#' # Alternatively we can fully specify the plot in each layer. This
#' # is not useful here, but can be more clear when working with complex
#' # mult-dataset graphics
#' ggplot() +
#' geom_point(data = df, aes(gp, y)) +
#' geom_point(data = ds, aes(gp, mean), colour = 'red', size = 3) +
#' geom_errorbar(
#' data = ds,
#' aes(gp, mean, ymin = mean - sd, ymax = mean + sd),
#' colour = 'red',
#' width = 0.4
#' )
ggplot <- function(data = NULL, mapping = aes(), ...,
environment = parent.frame()) {
UseMethod("ggplot")
}
#' @export
ggplot.default <- function(data = NULL, mapping = aes(), ...,
environment = parent.frame()) {
ggplot.data.frame(fortify(data, ...), mapping, environment = environment)
}
#' @export
ggplot.data.frame <- function(data, mapping = aes(), ...,
environment = parent.frame()) {
if (!missing(mapping) && !inherits(mapping, "uneval")) {
stop("Mapping should be created with `aes() or `aes_()`.", call. = FALSE)
}
p <- structure(list(
data = data,
layers = list(),
scales = scales_list(),
mapping = mapping,
theme = list(),
coordinates = coord_cartesian(),
facet = facet_null(),
plot_env = environment
), class = c("gg", "ggplot"))
p$labels <- make_labels(mapping)
set_last_plot(p)
p
}
plot_clone <- function(plot) {
p <- plot
p$scales <- plot$scales$clone()
p
}
#' Reports whether x is a ggplot object
#' @param x An object to test
#' @keywords internal
#' @export
is.ggplot <- function(x) inherits(x, "ggplot")
#' Explicitly draw plot
#'
#' Generally, you do not need to print or plot a ggplot2 plot explicitly: the
#' default top-level print method will do it for you. You will, however, need
#' to call `print()` explicitly if you want to draw a plot inside a
#' function or for loop.
#'
#' @param x plot to display
#' @param newpage draw new (empty) page first?
#' @param vp viewport to draw plot in
#' @param ... other arguments not used by this method
#' @keywords hplot
#' @return Invisibly returns the result of [ggplot_build()], which
#' is a list with components that contain the plot itself, the data,
#' information about the scales, panels etc.
#' @export
#' @method print ggplot
#' @examples
#' colours <- list(~class, ~drv, ~fl)
#'
#' # Doesn't seem to do anything!
#' for (colour in colours) {
#' ggplot(mpg, aes_(~ displ, ~ hwy, colour = colour)) +
#' geom_point()
#' }
#'
#' # Works when we explicitly print the plots
#' for (colour in colours) {
#' print(ggplot(mpg, aes_(~ displ, ~ hwy, colour = colour)) +
#' geom_point())
#' }
print.ggplot <- function(x, newpage = is.null(vp), vp = NULL, ...) {
set_last_plot(x)
if (newpage) grid.newpage()
# Record dependency on 'ggplot2' on the display list
# (AFTER grid.newpage())
grDevices::recordGraphics(
requireNamespace("ggplot2", quietly = TRUE),
list(),
getNamespace("ggplot2")
)
data <- ggplot_build(x)
gtable <- ggplot_gtable(data)
if (is.null(vp)) {
grid.draw(gtable)
} else {
if (is.character(vp)) seekViewport(vp) else pushViewport(vp)
grid.draw(gtable)
upViewport()
}
invisible(x)
}
#' @rdname print.ggplot
#' @method plot ggplot
#' @export
plot.ggplot <- print.ggplot